某化工廠引進一條先進生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本y(萬元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式可以近視地表示為,已知此生產(chǎn)線的年產(chǎn)量最大為210噸.
(Ⅰ) 求年產(chǎn)量為多少噸時,生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(Ⅱ)若每噸產(chǎn)品平均出廠價為40萬元,那么當年產(chǎn)量為多少噸時,可以獲得最大利潤?最大利潤是多少?

(Ⅰ)年產(chǎn)量為噸時,生產(chǎn)每噸產(chǎn)品的平均成本最低,最低成本為萬元;(Ⅱ)當年產(chǎn)量為噸時,可以獲得最大利潤,最大利潤是萬元.

解析試題分析:(Ⅰ)先根據(jù)定義將平均成本的表達式求出來,然后利用基本不等式求平均成本的最小值,但需注意基本不等式適用時的三個基本條件;(Ⅱ)先將總利潤的函數(shù)解析式求出來,然后利用函數(shù)的單調(diào)性與最值的相關(guān)方法求總利潤的最大值.
試題解析:(Ⅰ)每噸產(chǎn)品的平均成本
當且僅當取等號即x=200<210 滿足。
年產(chǎn)量為200噸時,生產(chǎn)每噸產(chǎn)品的平均成本最低,最低成本為32萬元;   5分
(Ⅱ)設(shè)總利潤為萬元,

上是增函數(shù)時,有最大值為
年產(chǎn)量為210噸時,可以獲得最大利潤1660萬元.   10分
考點:基本不等式、二次函數(shù)的最值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=,(x>0,).
(1) 當a=4時,求函數(shù)f(x)的最小值;
(2) 若函數(shù)>-x+4,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地需要修建一條大型輸油管道通過240公里寬的沙漠地帶,該段輸油管道兩端的輸油站已建好,余下工程是在該段兩端已建好的輸油站之間鋪設(shè)輸油管道和等距離修建增壓站(又稱泵站).經(jīng)預(yù)算,修建一個增壓站的工程費用為400萬元,鋪設(shè)距離為x公里的相鄰兩增壓站之間的輸油管道費用為x2+x萬元.設(shè)余下工程的總費用為y萬元.
(1)試將y表示成x的函數(shù);
(2)需要修建多少個增壓站才能使y最小,其最小值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知都是正數(shù),
(1)若,求的最大值
(2)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,且
(1)求證:;
(2)若恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知求證:
(2)已知,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若x、y滿足約束條件,則z=x+2y的取值范圍(  )

A.[2,6]B.[2,5]C.[3,6]D.(3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在直線位于第一象限內(nèi)的圖象上運動, 則的最小值是 ____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若對任意x>0,a恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案