【題目】在海岸A處,發(fā)現(xiàn)北偏東45°方向,距A處( ﹣1)海里的B處有一艘走私船,在A處北偏西75°方向,距A處2海里的C處的緝私船奉命以10 海里/小時(shí)的速度追截走私船,此時(shí)走私船正以10海里/小時(shí)的速度從B處向北偏東30°的方向逃竄,問(wèn)緝私船沿什么方向能最快追上走私船,并求出所需要的時(shí)間.

【答案】解:如圖所示,設(shè)緝私船追上走私船需t小時(shí), 則有CD= ,BD=10t.在△ABC中,
∵AB= ﹣1,AC=2,
∠BAC=45°+75°=120°.
根據(jù)余弦定理可求得BC=
∠CBD=90°+30°=120°.
在△BCD中,根據(jù)正弦定理可得
sin∠BCD= ,
∵∠CBD=120°,∴∠BCD=30°,∠BDC=30°,
∴BD=BC= ,則有
10t= ,t= =0.245(小時(shí))=14.7(分鐘).
所以緝私船沿北偏東60°方向,需14.7分鐘才能追上走私船.

【解析】設(shè)緝私船追上走私船需t小時(shí),進(jìn)而可表示出CD和BD,進(jìn)而在△ABC中利用余弦定理求得BC,進(jìn)而在△BCD中,根據(jù)正弦定理可求得sin∠BCD的值,進(jìn)而求得∠BDC=∠BCD=30°進(jìn)而求得BD,進(jìn)而利用BD=10t求得t.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

(1)設(shè)為參數(shù),若,求直線的參數(shù)方程;

(2)已知直線與曲線交于,設(shè),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】南京市江北新區(qū)計(jì)劃在一個(gè)豎直長(zhǎng)度為20米的瀑布正前方修建一座觀光電梯。如圖所示,瀑布底部距離水平地面的高度60米,電梯上設(shè)有一個(gè)安全拍照口, 上升的最大高度為60米。設(shè)距離水平地面的高度為米, 處拍照瀑布的視角。攝影愛(ài)好者發(fā)現(xiàn),要使照片清晰,視角不能小于。

1)當(dāng)米時(shí),視角恰好為,求電梯和山腳的水平距離。

2)要使電梯拍照口的高度52米及以上時(shí),拍出的照片均清晰,請(qǐng)求出電梯和山腳的水平距離的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解甲、乙兩個(gè)工廠生產(chǎn)的輪胎的寬度是否達(dá)標(biāo),分別從兩廠隨機(jī)各選取了10個(gè)輪胎,將每個(gè)輪胎的寬度(單位:mm)記錄下來(lái)并繪制出如下的折線圖:

(1)分別計(jì)算甲、乙兩廠提供的10個(gè)輪胎寬度的平均值;

(2)輪胎的寬度在內(nèi),則稱這個(gè)輪胎是標(biāo)準(zhǔn)輪胎.試比較甲、乙兩廠分別提供的10個(gè)輪胎中所有標(biāo)準(zhǔn)輪胎寬度的方差的大小,根據(jù)兩廠的標(biāo)準(zhǔn)輪胎寬度的平均水平及其波動(dòng)情況,判斷這兩個(gè)工廠哪個(gè)廠的輪胎相對(duì)更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B、C為△ABC的三個(gè)內(nèi)角,且其對(duì)邊分別為a、b、c,若cosBcosC﹣sinBsinC=
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為調(diào)查高一新生上學(xué)路程所需要的時(shí)間(單位:分鐘),從高一年級(jí)新生中隨機(jī)抽取100名新生按上學(xué)所需時(shí)間分組:第1組(0,10],第2組(10,20],第3組(20,30],第4組(30,40],第5組(40,50],得到的頻率分布直方圖如圖所示.

(1)根據(jù)圖中數(shù)據(jù)求a的值;
(2)若從第3,4,5組中用分層抽樣的方法抽取6名新生參與交通安全問(wèn)卷調(diào)查,應(yīng)從第3,4,5組各抽取多少名新生?
(3)在(2)的條件下,該校決定從這6名新生中隨機(jī)抽取2名新生參加交通安全宣傳活動(dòng),求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)一批共50件的某電器進(jìn)行分類檢測(cè),其重量(克)統(tǒng)計(jì)如下:

質(zhì)量段

[80,85)

[85,90)

[90,95)

[95,100]

件數(shù)

5

a

15

b

規(guī)定重量在82克及以下的為“A”型,重量在85克及以上的為“B”型,已知該批電器有“A“型2件
(1)從該批電器中任選1件,求其為“B”型的概率;
(2)從重量在[80,85)的5件電器中,任選2件,求其中恰有1件為“A”型的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系.已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為).

(Ⅰ)設(shè)為參數(shù),若,求直線的參數(shù)方程;

(Ⅱ)已知直線與曲線交于, ,設(shè),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊分別為a,b,c,且a+c=6,b=2,cosB=
(1)求a,c的值;
(2)求sin(A﹣B)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案