【題目】已知過(guò)點(diǎn)P(4,0)的動(dòng)直線與拋物線C:交于點(diǎn)A,B,且(點(diǎn)O為坐標(biāo)原點(diǎn)).
(1)求拋物線C的方程;
(2)當(dāng)直線AB變動(dòng)時(shí),x軸上是否存在點(diǎn)Q使得點(diǎn)P到直線AQ,BQ的距離相等,若存在,求出點(diǎn)Q坐標(biāo),若不存在,說(shuō)明理由.
【答案】(1)=;(2)軸上存在點(diǎn),使得點(diǎn)到直線,的距離相等.
【解析】
(1)設(shè)過(guò)點(diǎn)的動(dòng)直線為=,聯(lián)立拋物線的方程,設(shè),,運(yùn)用韋達(dá)定理,結(jié)合向量的數(shù)量積的坐標(biāo)表示,化簡(jiǎn)可得,進(jìn)而得到拋物線方程;
(2)軸上假設(shè)存在點(diǎn)符合題意,由題意可得=,運(yùn)用直線的斜率公式和韋達(dá)定理,化簡(jiǎn)可得的值,即可判斷存在性.
(1)設(shè)過(guò)點(diǎn)的動(dòng)直線為=,
代入拋物線=,可得=,
設(shè),,
可得=,
由可得==,
解得=,則拋物線的方程為=;
(2)當(dāng)直線變動(dòng)時(shí),軸上假設(shè)存在點(diǎn)使得點(diǎn)到直線,的距離相等,
由角平分線的判定定理可得為的角平分線,即有=,
由(1)可得=,=,
則,
化為=,
即為=,
化簡(jiǎn)可得=,
則軸上存在點(diǎn),使得點(diǎn)到直線,的距離相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解高中學(xué)生對(duì)數(shù)學(xué)課是否喜愛(ài)是否和性別有關(guān),隨機(jī)調(diào)查220名高中學(xué)生,將他們的意見(jiàn)進(jìn)行了統(tǒng)計(jì),得到如下的列聯(lián)表.
喜愛(ài)數(shù)學(xué)課 | 不喜愛(ài)數(shù)學(xué)課 | 合計(jì) | |
男生 | 90 | 20 | 110 |
女生 | 70 | 40 | 110 |
合計(jì) | 160 | 60 | 220 |
(1)根據(jù)上面的列聯(lián)表判斷,能否有的把握認(rèn)為“喜愛(ài)數(shù)學(xué)課與性別”有關(guān);
(2)為培養(yǎng)學(xué)習(xí)興趣,從不喜愛(ài)數(shù)學(xué)課的學(xué)生中進(jìn)行進(jìn)一步了解,從上述調(diào)查的不喜愛(ài)數(shù)學(xué)課的人員中按分層抽樣抽取6人,再?gòu)倪@6人中隨機(jī)抽出2名進(jìn)行電話回訪,求抽到的2人中至少有1名“男生”的概率.
參考公式:.
P() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:()的焦點(diǎn)到點(diǎn)的距離為.
(1)求拋物線的方程;
(2)過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,,點(diǎn)、分別在第一和第二象限內(nèi),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2(cos2θ+3sin2θ)=12,直線l的參數(shù)方程為(t為參數(shù)),直線l與曲線C交于M,N兩點(diǎn).
(1)若點(diǎn)P的極坐標(biāo)為(2,π),求|PM||PN|的值;
(2)求曲線C的內(nèi)接矩形周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1+a2+…+an=an+1﹣2.
(1)若a1=2,求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列1,a2,a4,b1,b2,…bn,…成等差數(shù)列,求數(shù)列{bn}的前n項(xiàng)和為Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線,的交點(diǎn)分別為、(、異于原點(diǎn)),當(dāng)斜率時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解高一高二各班體育節(jié)的表現(xiàn)情況,統(tǒng)計(jì)了高一高二各班的得分情況并繪成如圖所示的莖葉圖,則下列說(shuō)法正確的是( )
A.高一年級(jí)得分中位數(shù)小于高二年級(jí)得分中位數(shù)
B.高一年級(jí)得分方差大于高二年級(jí)得分方差
C.高一年級(jí)得分平均數(shù)等于高二年級(jí)得分平均數(shù)
D.高一年級(jí)班級(jí)得分最低為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】保護(hù)環(huán)境就是保護(hù)人類健康.空氣中負(fù)離子濃度(單位:個(gè)/)可以作為衡量空氣質(zhì)量的一個(gè)指標(biāo),也對(duì)人的健康有一定的影響.根據(jù)我國(guó)部分省市區(qū)氣象部門公布的數(shù)據(jù),目前對(duì)空氣負(fù)離子濃度的等級(jí)標(biāo)準(zhǔn)如下表.
表負(fù)離子濃度與空氣質(zhì)量對(duì)應(yīng)標(biāo)準(zhǔn):
負(fù)離子濃度 | 等級(jí) | 和健康的關(guān)系 |
級(jí) | 不利 | |
級(jí) | 正常 | |
級(jí) | 較有利 | |
級(jí) | 有利 | |
級(jí) | 相當(dāng)有利 | |
級(jí) | 很有利 | |
級(jí) | 極有利 |
圖空氣負(fù)離子濃度
某地連續(xù)天監(jiān)測(cè)了該地空氣負(fù)離子濃度,并繪制了如圖所示的折線圖.根據(jù)折線圖,下列說(shuō)法錯(cuò)誤的是( )
A.這天的空氣負(fù)離子濃度總體越來(lái)越高
B.這天中空氣負(fù)離子濃度的中位數(shù)約個(gè)
C.后天的空氣質(zhì)量對(duì)身體健康的有利程度明顯好于前天
D.前天空氣質(zhì)量波動(dòng)程度小于后天
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=sin 3x-cos 3x+1的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:
①它的圖象關(guān)于直線x=對(duì)稱;
②它的最小正周期為;
③它的圖象關(guān)于點(diǎn)(,1)對(duì)稱;
④它在[]上單調(diào)遞增.
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.②③C.①②④D.②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com