已知拋物線的焦點F在y軸上,拋物線上一點A(a,4)到準線的距離是5,過點F的直線與拋物線交于M,N兩點,過M,N兩點分別作拋物線的切線,這兩條切線的交點為T.
(I)求拋物線的標(biāo)準方程;
(II)求
FT
MN
的值;
(III)求證:|
FT
|是|
MF
|和|
NF
|
的等比中項.
分析:(I)先根據(jù)題意設(shè)出拋物線的方程,再結(jié)合點A到拋物線準線的距離可求出p的值,進而可得到拋物線的標(biāo)準方程.
(II)先求出F的坐標(biāo),然后設(shè)出直線MN的方程,聯(lián)立直線與拋物線消去y得到關(guān)于x的一元二次方程,表示出兩根之和與兩根之積,然后表示出
MN
,再對x2=4y進行求導(dǎo),表示出切線MT、NT的方程后聯(lián)立解出交點T的坐標(biāo),得到
FT
的坐標(biāo)表示,最后使
FT
MN
運算等于0即可.
(III)根據(jù)(II)中
FT
的坐標(biāo)求出|
FT
|2
,再結(jié)合拋物線的定義課得到|
MF
|=y1+1,|
NF
|=y2+1.
,再由|
MF
|•|
NF
|=(y1+1)(y2+1)
并將直線方程y=kx+1代入,結(jié)合(II)中的兩根之和與兩根之積可得到|
FT
|2=|
MF
|•|
NF
|.
得證.
解答:(I)解:由題意可設(shè)拋物線的方程為x2=2py(p≠0).
因為點A(a,4)在拋物線上,所以p>0.
又點A(a,4)到拋物線準線的距離是5,所以
p
2
+4=5,可得p=2.
所以拋物線的標(biāo)準方程為x2=4y.

(II)解:點F為拋物線的焦點,則F(0,1).
依題意可知直線MN不與x軸垂直,
所以設(shè)直線MN的方程為y=kx+1.
y=kx+1
x2=4y.
x2-4kx-4=0.

因為MN過焦點F,所以判別式大于零.
設(shè)M(x1,y1),N(x2,y2).
則x1+x2=4k,x1x2=-4.
MN
=(x2-x1,y2-y1)=(x2-x1,k(x2-x1)).

由于x2=4y,所以y′=
1
2
x.

切線MT的方程為y-y1=
1
2
x1(x-x1)
,①
切線NT的方程為y-y2=
1
2
x2(x-x2).

由①,②,得T(
x1+x2
2
x1x2
4
)

FT
=T(
x1+x2
2
,
x1x2
4
-1)=(2k,-2)

所以
FT
MN
=0.


(III)證明:|
FT
|2=(2k)2+(-2)2=4k2+4.

由拋物線的定義知|
MF
|=y1+1,|
NF
|=y2+1.

則|
MF
|•|
NF
|=(y1+1)(y2+1)=(kx1+2)(kx2+2)

=k2x1x2+2k(x1+x2)+4=4k2+4.
所以|
FT
|2=|
MF
|•|
NF
|.

|
FT
|是|
MF
|和|
NF
|
的等比中項.
點評:本土主要考查直線與拋物線的綜合問題以及向量的運算.直線與圓錐曲線是高考的重點問題,常以壓軸題的形式出現(xiàn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的焦點F在x軸上,直線l過點F且垂直于x軸,l與拋物線交于A、B兩點,O為坐標(biāo)原點,若△OAB的面積等于4,求此拋物線的標(biāo)準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點F在y軸上,拋物線上一點A(a,4)到準線的距離是5,過點F的直線與拋物線交于M,N兩點,過M,N兩點分別作拋物線的切線,這兩條切線的交點為T.
(I)求拋物線的標(biāo)準方程;
(II)求數(shù)學(xué)公式的值;
(III)求證:數(shù)學(xué)公式的等比中項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:東城區(qū)二模 題型:解答題

已知拋物線的焦點F在y軸上,拋物線上一點A(a,4)到準線的距離是5,過點F的直線與拋物線交于M,N兩點,過M,N兩點分別作拋物線的切線,這兩條切線的交點為T.
(I)求拋物線的標(biāo)準方程;
(II)求
FT
MN
的值;
(III)求證:|
FT
|是|
MF
|和|
NF
|
的等比中項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的焦點F在x軸上,直線l過點F且垂直于x軸,l與拋物線交于A、B兩點,O為坐標(biāo)原點,若△OAB的面積等于4,求此拋物線的標(biāo)準方程.

查看答案和解析>>

同步練習(xí)冊答案