在一次數(shù)學(xué)考試中,第22,23,24題為選做題,規(guī)定每位考生必須且只須在其中選做一題,設(shè)5名考生選做這三題的任意一題的可能性均為,每位學(xué)生對每題的選擇是相互獨立的,各學(xué)生的選擇相互之間沒有影響.
(1)求其中甲、乙兩人選做同一題的概率;
(2)設(shè)選做第23題的人數(shù)為,求的分布列及數(shù)學(xué)期望.
(1);(2).

試題分析:(1) 設(shè)事件表示甲選22題,表示甲選23題,表示甲選24題,表示乙選22題,表示乙選23題,表示乙選24題,則甲、乙兩人選做同一題事件為,且相互獨立,根據(jù)相互獨立事件概率的求法計算可得;(2)服從二項分布,根據(jù)二項分布概率的計算方法可列出分布列.
試題解析:(1)設(shè)事件表示甲選22題,表示甲選23題,表示甲選24題,
表示乙選22題,表示乙選23題,表示乙選24題,
則甲、乙兩人選做同一題事件為,且相互獨立,
所以   4分
(2)設(shè)可能取值為0,1,2,3,4,5.
,
分布列為

0
1
2
3
4
5







                               12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

從某校高二年級名男生中隨機抽取名學(xué)生測量其身高,據(jù)測量被測學(xué)生的身高全部在之間.將測量結(jié)果按如下方式分成組:第一組,第二組, ,第八組,如下右圖是按上述分組得到的頻率分布直方圖的一部分.已知第一組與第八組的人數(shù)相同,第六組、第七組和第八組的人數(shù)依次成等差數(shù)列.
頻率分布表如下:
分組
頻數(shù)
頻率
頻率/組距
 
 
 
 








 
 
 
 
 
頻率分布直方圖如下:

(1)求頻率分布表中所標字母的值,并補充完成頻率分布直方圖;
(2)若從身高屬于第六組和第八組的所有男生中隨機抽取名男生,記他們的身高分別為,求滿足:的事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)一個盒子中裝有4張卡片,每張卡片上寫有1個數(shù)字,數(shù)字分別是1、2、3、4,現(xiàn)從盒子中隨機抽取卡片.
(Ⅰ)若一次從中隨機抽取3張卡片,求3張卡片上數(shù)字之和大于或等于7的概率;
(Ⅱ)若第一次隨機抽取1張卡片,放回后再隨機抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若X~B(n,p),且EX=6,DX=3,則P(X=1)的值為(  )
A.3·2-2        B.2-4
C.3·2-10D.2-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

袋中標號為1,2,3,4的四只球,四人從中各取一只,其中甲不取1號球,乙不取2號球,丙不取3號球,丁不取4號球的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將一顆質(zhì)地均勻的骰子拋擲兩次,所得向上點數(shù)分別為,則函數(shù)上為增函數(shù)的概率是              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),若從區(qū)間內(nèi)隨機選取一個實數(shù),則所選取的實數(shù)滿足的概率為 (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲乙丙三位同學(xué)獨立的解決同一個問題,已知三位同學(xué)能夠正確解決這個問題的概率分別為、,則有人能夠解決這個問題的概率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

俗話說:“三個臭皮匠,頂個諸葛亮”,某校三位學(xué)生參加數(shù)學(xué)省舉行的數(shù)學(xué)團體競賽,對于其中一題,他們各自解出的概率分別是,由于發(fā)揚團隊精神,此題能解出的概率是        

查看答案和解析>>

同步練習(xí)冊答案