下面是按照一定規(guī)律畫(huà)出的一列“樹(shù)型”圖:

設(shè)第n個(gè)圖有an個(gè)樹(shù)枝,則an+1與an(n≥2)之間的關(guān)系是______.
由題意,圖(2)比圖(1)多出2個(gè)“樹(shù)枝”,圖(3)比圖(2)多出5個(gè)“樹(shù)枝”,圖(4)比圖(3)多出10個(gè)“樹(shù)枝”,照此規(guī)律,an+1-an=n2+1
故答案為:an+1-an=n2+1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ax (a>1).
(1)證明:函數(shù)f(x)在(-1,+∞)上為增函數(shù);
(2)用反證法證明方程f(x)=0沒(méi)有負(fù)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用反證法證明:如果x>,那么x2+2x-1≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

⑴ 寫(xiě)出三個(gè)不同的自然數(shù),使得其中任意兩個(gè)數(shù)的乘積與10的和都是完全平方數(shù),請(qǐng)予以驗(yàn)證;
⑵ 是否存在四個(gè)不同的自然數(shù),使得其中任意兩個(gè)數(shù)的乘積與10的和都是完全平方數(shù)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,P是雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0,xy≠0)
上的動(dòng)點(diǎn),F(xiàn)1、F2是雙曲線(xiàn)的焦點(diǎn),M是∠F1PF2的平分線(xiàn)上一點(diǎn),且
F2M
MP
=0
.某同學(xué)用以下方法研究|OM|:延長(zhǎng)F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2M的中點(diǎn),得|OM|=
1
2
|NF1|=…=a
.類(lèi)似地:P是橢圓
x2
a2
+
y2
b2
=1(a>b>0,xy≠0)
上的動(dòng)點(diǎn),F(xiàn)1、F2是橢圓的焦點(diǎn),M是∠F1PF2的平分線(xiàn)上一點(diǎn),且
F2M
MP
=0
.則|OM|的取值范圍是 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列{an}滿(mǎn)足a1=1,an+an+1=(
1
4
)n
(n∈N+),Sn=a1+4a2+42a3+…+4n-1an,類(lèi)比課本中推導(dǎo)等比數(shù)列前n項(xiàng)和公式的方法,可求得5Sn-4nan=( 。
A.
n
2
B.nC.n+1D.n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

我們常用定義解決與圓錐曲線(xiàn)有關(guān)的問(wèn)題.如“設(shè)橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)左焦點(diǎn)F1作傾斜角為θ的弦AB,設(shè)|F1A|=r1,|F1B|=r2,試證
1
r1
+
1
r2
為定值”.
證明如下:不妨設(shè)A在x軸的上方,在△ABC中,由橢圓的定義及余弦定理得,(2a-r12=r12+4c2-4cr1cosθ,∴r1=
b2
a-ccosθ
,
同理r2=
b2
a-ccos(π-θ)
=
b2
a+ccosθ
,于是
1
r
1
+
1
r
2
=
2a
b2
.請(qǐng)用類(lèi)似的方法探索:設(shè)雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)左焦點(diǎn)F1作傾斜角為θ的直線(xiàn)與雙曲線(xiàn)右支交于點(diǎn)A,左支交于點(diǎn)B,設(shè)|F1A|=r1,|F1B|=r2,是否有類(lèi)似的結(jié)論成立,請(qǐng)寫(xiě)出與定值有關(guān)的結(jié)論是______..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下面是一段演繹推理:如果直線(xiàn)平行于平面,則這條直線(xiàn)平行于平面內(nèi)的所有直線(xiàn);已知直線(xiàn)b平面α,直線(xiàn)a?平面α;所以直線(xiàn)b直線(xiàn)a,在這個(gè)推理中( 。
A.大前提正確,結(jié)論錯(cuò)誤
B.小前提與結(jié)論都是錯(cuò)誤的
C.大、小前提正確,只有結(jié)論錯(cuò)誤
D.大前提錯(cuò)誤,結(jié)論錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用反證法證明命題“三角形的內(nèi)角至多有一個(gè)鈍角”時(shí),假設(shè)正確的是( )
A.假設(shè)至少有一個(gè)鈍角B.假設(shè)至少有兩個(gè)鈍角
C.假設(shè)沒(méi)有一個(gè)鈍角D.假設(shè)沒(méi)有一個(gè)鈍角或至少有兩個(gè)鈍角

查看答案和解析>>

同步練習(xí)冊(cè)答案