(2012•河南模擬)選修4-1幾何證明選講
如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,延長BC,AD交于點E,且CE=AB=AC,連接BD,交AC于點F.
(I )證明:BD平分∠ABC;
(II)若AD=6,BD=8,求DF的長.
分析:(Ⅰ)由CE=AC,知∠E=∠CAE,由AB=AC,知∠ABC=∠ACB.由∠DBC=∠CAE,知∠DBC=∠E=∠CAE.由能夠證明BD平分∠ABC. 
(Ⅱ)由(Ⅰ)知∠CAE=∠DBC=∠ABD.由∠ADF=∠ADB,知△ADF∽△BDA,由此能求出DF的長.
解答:解:(Ⅰ)∵CE=AC,∴∠E=∠CAE,
∵AB=AC,∴∠ABC=∠ACB.
∵∠DBC=∠CAE,∴∠DBC=∠E=∠CAE.
∵∠ABC=∠ABD+∠DBC,∠ACB=∠E+∠CAE,
∴∠ABD=∠CAE,
∴∠ABD=∠DBC,即BD平分∠ABC. 
(Ⅱ)由(Ⅰ)知∠CAE=∠DBC=∠ABD.
又∵∠ADF=∠ADB,∴△ADF∽△BDA,
AD
BD
=
DF
AD
,
∵AD=6,BD=8.
DF=
AD2
BD
=
36
8
=
9
2
點評:本題考查相似三角形的判斷和應用,是基礎題.解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•河南模擬)如圖,在四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,底面ABCD為矩形,AD=2AB=2PA,E為PD的上一點,且PE=2ED,F(xiàn)為PC的中點.
(Ⅰ)求證:BF∥平面AEC;
(Ⅱ)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河南模擬)己知i為虛數(shù)單位,則
i
1+i
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河南模擬)已知a,b,c分別是△ABC的三個內(nèi)角A,B,C的對邊,若c=2,b=
3
,A+C=3B,則sinC=
6
3
6
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河南模擬)若函數(shù)f(x)的導函數(shù)f′(x)=x2-4x+3,則使得函數(shù)f(x-1)單調(diào)遞減的一個充分不必要條件是x∈( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河南模擬)選修4-5:不等式選講
設f(x)=2|x|-|x+3|.
(1)求不等式f(x)≤7的解集S;
(2)若關(guān)于x的不等式f(x)+|2t-3|≤0有解,求參數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案