在極坐標(biāo)系中,O為極點(diǎn),半徑為2的圓C的圓心的極坐標(biāo)為.

(1)求圓C的極坐標(biāo)方程;

(2)P是圓C上一動(dòng)點(diǎn),點(diǎn)Q滿足3,以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸建立直角坐標(biāo)系,求點(diǎn)Q的軌跡的直角坐標(biāo)方程.

 

1ρ4cos2x2y26x6y0

【解析】(1)設(shè)M(ρ,θ)是圓C上任一點(diǎn),過(guò)點(diǎn)CCHOMH點(diǎn),則在RtCOH中,OHOC·cosCOH.

∵∠COHCOM,OHOMρ,

OC2ρ2cos,

ρ4cos為所求的圓C的極坐標(biāo)方程.

(2)設(shè)點(diǎn)Q的極坐標(biāo)為(ρθ),33

P的極坐標(biāo)為,

代入圓C的極坐標(biāo)方程得ρ4cos

ρ6cos θ6sin θ,

ρ26ρcos θ6ρsin θ,令xρcos θyρsin θ,

x2y26x6y

點(diǎn)Q的軌跡的直角坐標(biāo)方程為x2y26x6y0.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集13講練習(xí)卷(解析版) 題型:選擇題

已知x2y21,的取值范圍是(  )

A(,) B(,) C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集10講練習(xí)卷(解析版) 題型:填空題

數(shù)列{2n·3n}的前n項(xiàng)和Tn________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-5不等式選講 練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)|2x1||2xa|g(x)x3.

(1)當(dāng)a=-2時(shí),求不等式f(x)<g(x)的解集;

(2)設(shè)a>1時(shí),且當(dāng)x時(shí),f(x)≤g(x),求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-5不等式選講 練習(xí)卷(解析版) 題型:填空題

設(shè)函數(shù)f(x)|x1||xa|(a0).若不等式f(x)≥5的解集為(,-2](3,+∞),則a的值為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-4坐標(biāo)系與參數(shù)方程練習(xí)卷(解析版) 題型:填空題

在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (t為參數(shù)),若以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸,且長(zhǎng)度單位相同,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos.若直線l與曲線C交于A,B兩點(diǎn),則|AB|________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-1幾何證明選講練習(xí)卷(解析版) 題型:解答題

如圖,ABO的直徑,BCO的切線,B為切點(diǎn),OC平行于弦AD,連結(jié)CD.

(1)求證:CDO的切線;

(2)過(guò)點(diǎn)DDEAB于點(diǎn)E,交AC于點(diǎn)P,求證:P點(diǎn)平分線段DE.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題

已知m(2cos x2sin x,1)n(cos x,-y),且mn.

(1)y表示為x的函數(shù)f(x),并求f(x)的單調(diào)遞增區(qū)間;

(2)已知abc分別為ABC的三個(gè)內(nèi)角A,BC對(duì)應(yīng)的邊長(zhǎng),若f3,且a2,bc4,求ABC的面積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(八)第二章第五節(jié)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)=-x+log2.

(1)f()+f(-)的值.

(2)當(dāng)x(-a,a],其中a(0,1),a是常數(shù)時(shí),函數(shù)f(x)是否存在最小值?若存在,求出f(x)的最小值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案