【題目】已知函數(shù)f(x),
(1)討論函數(shù)f(x)的單調(diào)性;
(2)證明:a=1時(shí),f(x)+g(x)﹣(1)lnx>e.
【答案】(1)詳見解析;(2)證明見解析
【解析】
(1)對求導(dǎo)后,再對a分類討論即可得出函數(shù)的單調(diào)性.
(2)a=1時(shí),將所證不等式轉(zhuǎn)化為ex﹣ex+1,令F(x)=ex﹣ex+1,G(x),分別根據(jù)導(dǎo)數(shù)求出的最小值和的最大值即可證明不等式成立.
(1)f(x)alnx,(x∈(0,+∞)).
.
當(dāng)a≤0時(shí),<0,函數(shù)f(x)在x∈(0,+∞)上單調(diào)遞減.
a>0時(shí),由,得,由,得
所以函數(shù)在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增.
(2)證明:a=1時(shí),要證f(x)+g(x)﹣(1)lnx>e.
即要證:lnx﹣e>0ex﹣ex+1.x∈(0,+∞).
令F(x)=ex﹣ex+1,F′(x)=ex﹣e,
當(dāng)x∈(0,1)時(shí),F′(x)<0,此時(shí)函數(shù)F(x)單調(diào)遞減;
當(dāng)x∈(1,+∞)時(shí),F′(x)>0,此時(shí)函數(shù)F(x)單調(diào)遞增.
可得x=1時(shí),函數(shù)F(x)取得最小值,F(1)=1.
令G(x),G′(x),
當(dāng)時(shí),,此時(shí)為增函數(shù),
當(dāng)時(shí)。,此時(shí)為減函數(shù)
所以x=e時(shí),函數(shù)G(x)取得最大值,G(e)=1.
x=1與x=e不同時(shí)取得,因此F(x)>G(x),即ex﹣ex+1.x∈(0,+∞).
故原不等式成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,分別為的中點(diǎn),為的一個(gè)三等分點(diǎn)(靠近點(diǎn)).將沿折起,記折起后點(diǎn)為,連接為上的一點(diǎn),且,連接.
(1)求證:平面;
(2)若,直線與平面所成的角為,當(dāng)最大時(shí),求,并計(jì)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的正方形,,為中點(diǎn),點(diǎn)在上且平面,在延長線上,,交于,且.
(1)證明:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)為奇函數(shù),且當(dāng)x≥0時(shí),f(x)=ex﹣cosx,則不等式f(2x﹣1)+f(x﹣2)>0的解集為( )
A.(﹣∞,1)B.(﹣∞,)C.(,+∞)D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓.
(Ⅰ)若的一個(gè)焦點(diǎn)為,且點(diǎn)在上,求橢圓的方程;
(Ⅱ)已知上有兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),且,求線段的最小值(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場推出消費(fèi)抽現(xiàn)金活動(dòng),顧客消費(fèi)滿1000元可以參與一次抽獎(jiǎng),該活動(dòng)設(shè)置了一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)以及參與獎(jiǎng),獎(jiǎng)金分別為:一等獎(jiǎng)200元、二等獎(jiǎng)100元、三等獎(jiǎng)50元、參與獎(jiǎng)20元,具體獲獎(jiǎng)人數(shù)比例分配如圖,則下列說法中錯(cuò)誤的是( )
A.獲得參與獎(jiǎng)的人數(shù)最多
B.各個(gè)獎(jiǎng)項(xiàng)中一等獎(jiǎng)的總金額最高
C.二等獎(jiǎng)獲獎(jiǎng)人數(shù)是一等獎(jiǎng)獲獎(jiǎng)人數(shù)的兩倍
D.獎(jiǎng)金平均數(shù)為元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)城鄉(xiāng)居民儲蓄存款年底余額(單位:億元)如圖所示,下列判斷一定不正確的是( )
A.城鄉(xiāng)居民儲蓄存款年底余額逐年增長
B.農(nóng)村居民的存款年底余額所占比重逐年上升
C.到2019年農(nóng)村居民存款年底總余額已超過了城鎮(zhèn)居民存款年底總余額
D.城鎮(zhèn)居民存款年底余額所占的比重逐年下降
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】角谷猜想,也叫猜想,是由日本數(shù)學(xué)家角谷靜夫發(fā)現(xiàn)的,是指對于每一個(gè)正整數(shù),如果它是奇數(shù),則對它乘3再加1;如果它是偶數(shù),則對它除以2,如此循環(huán)最終都能夠得到1.如:取,根據(jù)上述過程,得出6,3,10,5,16,8,4,2,1,共9個(gè)數(shù).若,根據(jù)上述過程得出的整數(shù)中,隨機(jī)選取兩個(gè)不同的數(shù),則這兩個(gè)數(shù)都是偶數(shù)的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com