精英家教網 > 高中數學 > 題目詳情

已知圓,直線

(1)判斷直線與圓C的位置關系;

(2)設與圓C交與不同兩點A、B,求弦AB的中點M的軌跡方程;

(3)若定點P(1,1)分弦AB為,求此時直線的方程.

 

【答案】

(1)由題意可知,圓心C到直線的距離,所以直線與圓相交;(2);(3)

【解析】

試題分析:(1)相交;(2)當M與P不重合時,設,則,,從而得到的軌跡方程,當M與P重合時,也滿足上式,故弦AB中點的軌跡方程是;(3)若定點P(1,1)分弦AB為,則,得到一個關于的方程,聯立直線和圓的方程,得到關于的一個一元二次方程,根據兩根之后得到另一個關于的方程,兩個方程聯立解得,因為是一元二次方程的一個根,代入即可求出的值,從而求出直線的方程.

試題解析:

(1)圓的圓心為,半徑為。

∴圓心C到直線的距離

∴直線與圓C相交;

(2)當M與P不重合時,連結CM、CP,則,

,則

化簡得:

當M與P重合時,也滿足上式。

故弦AB中點的軌跡方程是

(3)設,由,

,化簡的………①

又由消去……(*)

   …………②

由①②解得,帶入(*)式解得,

∴直線的方程為

考點:本題考查了直線與圓的位置關系的判斷,動點的軌跡方程的求法,向量的坐標運算,體現了方程的思想方法.

 

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆陜西省高一上學期期末考試數學試卷(解析版) 題型:解答題

已知圓,直線,

(1)求證:直線與圓恒相交;

(2)當時,過圓上點作圓的切線交直線點,為圓上的動點,求的取值范圍;

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省煙臺市高三下學期3月診斷性測試文科數學 題型:解答題

已知圓,直線l:

(1)求圓C的普通方程.若以原點為極點,以x軸的正半軸為極軸建立極坐標系,寫出圓C的極坐標方程.

(2)判斷直線l與圓C的位置關系,并說明理由;若相交,請求出弦長

 

查看答案和解析>>

科目:高中數學 來源:2013屆北京市高二上學期期中考試數學試卷 題型:解答題

已知圓和直線,

(1)求證:不論取什么值,直線和圓總相交;

(2)求取何值時,直線被圓截得的弦最短,并求出最短弦的長;

 

 

查看答案和解析>>

科目:高中數學 來源:2010年海南中學高一下學期期末測試數學 題型:解答題

(本小題滿分10分)

已知圓,直線

(1)求證直線恒過定點,并求出該定點;

(2)當直線被圓截得弦長最小時,求此時直線的方程。

 

查看答案和解析>>

同步練習冊答案