【題目】已知橢圓的短軸長為2,以橢圓的長軸為直徑的圓與直線相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)斜率為的直線交橢圓兩點(diǎn),且,若直線上存在點(diǎn),使得是以為頂角的等腰直角三角形,求直線的方程.

【答案】(1);(2)

【解析】

1)先由短軸長求出的值,再根據(jù)點(diǎn)到直線的距離公式求出的值即可;(2)設(shè)直線的方程為,先由,則,再根據(jù)直線上存在點(diǎn),使得是以為頂角的等腰直角三角形,得出,最后由方程組即可求出的值進(jìn)而求出直線的方程.

1)由題意得,則,所以橢圓的方程為.

2)設(shè)直線的方程為,

.

,得,則.

因?yàn)?/span>是以為頂角的等腰直角三角形,

所以平行于軸,過的垂線,則垂足為線段的中點(diǎn).

設(shè)點(diǎn)的坐標(biāo)為,則.

由方程組解得,即.

,所以直線的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|x1|,關(guān)于x的不等式fx)<3|2x+1|的解集記為A

1)求A

2)已知a,bA,求證:fab)>fa)﹣fb).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8.

有時(shí)可用函數(shù)

描述學(xué)習(xí)某學(xué)科知識的掌握程度,其中x表示某學(xué)科知識的學(xué)習(xí)次數(shù)(),表示對該學(xué)科知識的掌握程度,正實(shí)數(shù)a與學(xué)科知識有關(guān).

1) 證明:當(dāng)時(shí),掌握程度的增加量總是下降;

2) 根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為,,

.當(dāng)學(xué)習(xí)某學(xué)科知識6次時(shí),掌握程度是85%,請確定相應(yīng)的學(xué)科.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秉承提升學(xué)生核心素養(yǎng)的理念,學(xué)校開設(shè)以提升學(xué)生跨文化素養(yǎng)為核心的多元文化融合課程.選某藝術(shù)課程的學(xué)生唱歌、跳舞至少會一項(xiàng),已知會唱歌的有人,會跳舞的有人,現(xiàn)從中選人,設(shè)為選出的人中既會唱歌又會跳舞的人數(shù),且

(1)求選該藝術(shù)課程的學(xué)生人數(shù);

(2)寫出的概率分布列并計(jì)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】7屆世界軍人運(yùn)動(dòng)會于20191018日至27日在湖北武漢舉行,賽期10天,共設(shè)置射擊、游泳、田徑、籃球等27個(gè)大項(xiàng),329個(gè)小項(xiàng).共有來自100多個(gè)國家的近萬名現(xiàn)役軍人同臺競技.前期為迎接軍運(yùn)會順利召開,武漢市很多單位和部門都開展了豐富多彩的宣傳和教育活動(dòng),努力讓大家更多的了解軍運(yùn)會的相關(guān)知識,并倡議大家做文明公民.武漢市體育局為了解廣大民眾對軍運(yùn)會知識的知曉情況,在全市開展了網(wǎng)上問卷調(diào)查,民眾參與度極高,現(xiàn)從大批參與者中隨機(jī)抽取200名幸運(yùn)參與者,他們得分(滿分100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下:

組別

頻數(shù)

5

30

40

50

45

20

10

1)若此次問卷調(diào)查得分整體服從正態(tài)分布,用樣本來估計(jì)總體,設(shè)分別為這200人得分的平均值和標(biāo)準(zhǔn)差(同一組數(shù)據(jù)用該區(qū)間中點(diǎn)值作為代表),求的值(,的值四舍五入取整數(shù)),并計(jì)算;

2)在(1)的條件下,為感謝大家參與這次活動(dòng),市體育局還對參加問卷調(diào)查的幸運(yùn)市民制定如下獎(jiǎng)勵(lì)方案:得分低于的可以獲得1次抽獎(jiǎng)機(jī)會,得分不低于的可獲得2次抽獎(jiǎng)機(jī)會,在一次抽獎(jiǎng)中,抽中價(jià)值為15元的紀(jì)念品A的概率為,抽中價(jià)值為30元的紀(jì)念品B的概率為.現(xiàn)有市民張先生參加了此次問卷調(diào)查并成為幸運(yùn)參與者,記Y為他參加活動(dòng)獲得紀(jì)念品的總價(jià)值,求Y的分布列和數(shù)學(xué)期望,并估算此次紀(jì)念品所需要的總金額.

(參考數(shù)據(jù):;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)在三棱錐中,底面,,且三棱錐的每個(gè)頂點(diǎn)都在球的表面上,則球的表面積為 _______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)學(xué)校對高三年級文科學(xué)生進(jìn)行了一次自主學(xué)習(xí)習(xí)慣的自評滿意度的調(diào)查,按系統(tǒng)抽樣方法得到了一個(gè)自評滿意度(百分制,單位:分)的樣本,如圖分別是該樣本數(shù)據(jù)的莖葉圖和頻率分布直方圖(都有部分缺失).

1)完善頻率分布直方圖(需寫出計(jì)算過程);

2)分別根據(jù)莖葉圖和頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù)m1m2,并指出選用哪一個(gè)數(shù)據(jù)來估計(jì)總體的中位數(shù)更合理(需要敘述理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別過橢圓左、右焦點(diǎn)的動(dòng)直線相交于點(diǎn),與橢圓分別交于不同四點(diǎn),直線的斜率滿足, 已知軸重合時(shí), .

1)求橢圓的方程;

2)是否存在定點(diǎn)使得為定值,若存在,求出點(diǎn)坐標(biāo)并求出此定值,若不存在,

說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義一:對于一個(gè)函數(shù),若存在兩條距離為d的直線,使得在時(shí),恒成立,則稱函數(shù)D內(nèi)有一個(gè)寬度為d的通道.定義二:若一個(gè)函數(shù),對于任意給定的正數(shù),都存在一個(gè)實(shí)數(shù),使得函數(shù)內(nèi)有一個(gè)寬度為的通道,則稱在正無窮處有永恒通道.下列函數(shù):①;②;③.其中在正無窮處有永恒通道的函數(shù)的個(gè)數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案