已知拋物線C1y=x2+2xC2y=-x2+a,如果直線l同時(shí)是C1C2的切線,稱lC1C2的公切線,公切線上兩個(gè)切點(diǎn)之間的線段,稱為公切線段。

1a取什么值時(shí),C1C2有且僅有一條公切線?寫出此公切線的方程;

2)若C1C2有兩條公切線,證明相應(yīng)的兩條公切線段互相平分。

 

答案:
解析:

(1)解析  函數(shù)y=x2+2x的導(dǎo)數(shù)y¢=2x+2,曲線C1在點(diǎn)的切線方程是:

,即                        ①

函數(shù)y=-x2+a的導(dǎo)數(shù)y¢=-2x,曲線C2在點(diǎn)的切線方程是:

,即。                           ②

如果直線l是過PQ的公切線,則①式和②式都是l的方程,所以。消去x2得方程

若判別式D=4-4´2(1+a)=0,即時(shí)解得,此時(shí)點(diǎn)PQ重合,即當(dāng)時(shí)C1C2有且僅有一條公切線,由①得公切線方程為。

(2)證明:由(1)可知,當(dāng)時(shí),C1C2有兩條公切線。

設(shè)一條公切線上切點(diǎn)為:P(x1,y1),Q(x2,y2)。其中PC1上,QC2上,則有x1+x2=-1,

線段PQ的中點(diǎn)為。同理,另一條公切線段P¢Q¢的中點(diǎn)也是。所以公切線段PQP¢Q¢互相平分。

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=2x2與拋物線C2關(guān)于直線y=-x對(duì)稱,則C2的準(zhǔn)線方程為(  )
A、x=
1
8
B、x=-
1
8
C、x=
1
2
D、x=-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=x2,橢圓C2:x2+
y24
=1.
(1)設(shè)l1,l2是C1的任意兩條互相垂直的切線,并設(shè)l1∩l2=M,證明:點(diǎn)M的縱坐標(biāo)為定值;
(2)在C1上是否存在點(diǎn)P,使得C1在點(diǎn)P處切線與C2相交于兩點(diǎn)A、B,且AB的中垂線恰為C1的切線?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=x2+2x和C:y=-x2+a,如果直線l同時(shí)是C1和C2的切線,稱l是C1和C2的公切線,公切線上兩個(gè)切點(diǎn)之間的線段,稱為公切線段.
(Ⅰ)a取什么值時(shí),C1和C2有且僅有一條公切線?寫出此公切線的方程;
(Ⅱ)若C1和C2有兩條公切線,證明相應(yīng)的兩條公切線段互相平分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=x2+2xC2:y=-x2+a.a(chǎn)取何值時(shí)C1和C2有且僅有一條公切線l,求出公切線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=x2,F(xiàn)為拋物線的焦點(diǎn),橢圓C2
x2
2
+
y2
a2
=1
(0<a<2);
(1)若M是C1與C2在第一象限的交點(diǎn),且|MF|=
3
4
,求實(shí)數(shù)a的值;
(2)設(shè)直線l:y=kx+1與拋物線C1交于A,B兩個(gè)不同的點(diǎn),l與橢圓C2交于P,Q兩個(gè)不同點(diǎn),AB中點(diǎn)為R,PQ中點(diǎn)為S,若O在以RS為直徑的圓上,且k 2
1
2
,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案