【題目】若直線 l1和l2 是異面直線,l1在平面 α內(nèi),l2在平面β內(nèi),l是平面α與平面β的交線,則下列命題正確的是( )
A.l與l1 , l2都不相交
B.l與l1 , l2都相交
C.l至多與l1 , l2中的一條相交
D.l至少與l1 , l2中的一條相交
【答案】D
【解析】解:A.l與l1 , l2可以相交,如圖:
∴該選項(xiàng)錯(cuò)誤;
B.l可以和l1 , l2中的一個(gè)平行,如上圖,∴該選項(xiàng)錯(cuò)誤;
C.l可以和l1 , l2都相交,如下圖:
,
∴該選項(xiàng)錯(cuò)誤;
D.“l(fā)至少與l1 , l2中的一條相交”正確,假如l和l1 , l2都不相交;
∵l和l1 , l2都共面;
∴l(xiāng)和l1 , l2都平行;
∴l(xiāng)1∥l2 , l1和l2共面,這樣便不符合已知的l1和l2異面;
∴該選項(xiàng)正確.
故選D.
【考點(diǎn)精析】本題主要考查了空間中直線與平面之間的位置關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握直線在平面內(nèi)—有無數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒有公共點(diǎn)才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF= ,給出下列結(jié)論:
(1)AC⊥BE;
(2)EF∥平面ABCD;
(3)三棱錐A﹣BEF的體積為定值;
(4)異面直線AE,BF所成的角為定值.
其中錯(cuò)誤的結(jié)論有( )
A.0個(gè)
B.1 個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=3,an+1﹣3an=3n(n∈N*),數(shù)列{bn}滿足bn= .
(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上的拋物線被直線y=2x+1截得的弦長為 .
(1)求拋物線的方程;
(2)若拋物線與直線y=2x﹣5無公共點(diǎn),試在拋物線上求一點(diǎn),使這點(diǎn)到直線y=2x﹣5的距離最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)證明:當(dāng)時(shí), ;
(2)若不等式對任意的正實(shí)數(shù)恒成立,求正實(shí)數(shù)的取值范圍;
(3)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正三棱柱ABC﹣A1B1C1的棱長都為2,E,F(xiàn),G為 AB,AA1 , A1C1的中點(diǎn),則B1F 與面GEF成角的正弦值( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =( sin ,1), =(cos ,cos2 ).
(Ⅰ)若 =1,求cos( ﹣x)的值;
(Ⅱ)記f(x)= ,在△ABC中,A、B、C的對邊分別為a、b、c,且滿足(2a﹣c)cosB=bcosC,求函數(shù)f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體,關(guān)于其結(jié)構(gòu)特征,下列說法不正確的是( 。
A.該幾何體是由兩個(gè)同底的四棱錐組成的幾何體
B.該幾何體有12條棱、6個(gè)頂點(diǎn)
C.該幾何體有8個(gè)面,并且各面均為三角形
D.該幾何體有9個(gè)面,其中一個(gè)面是四邊形,其余均為三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com