設P為直線3x+4y+3=0上的動點,過點P作圓C:x2+y2-2x-2y+1=0的兩條切線,切點分別為A,B,則四邊形PACB的面積最小時∠P=( )
A.60°
B.45°
C.30°
D.120°
【答案】分析:由題意畫出圖形,判斷四邊形面積最小時P的位置,利用點到直線的距離求出PC,然后求出∠P的大小.
解答:解:圓C:x2+y2-2x-2y+1=0,即圓C:(x-1)2+(y-1)2=1,圓心坐標(1,1),半徑為1;
由題意過點P作圓C:x2+y2-2x-2y+1=0的兩條切線,切點分別為A,B,
可知四邊形PACB的面積是兩個三角形的面積的和,因為CA⊥PA,CA=1,
顯然PC最小時四邊形面積最小,
即PC最小值==2.
,
∠CPA=30°,所以∠P=60°.
故選A.
點評:本題考查直線與圓的位置關系,正確判斷四邊形面積最小時的位置是解題的關鍵,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設P為直線3x+4y+3=0上的動點,過點P作圓C:x2+y2-2x-2y+1=0的兩條切線,切點分別為A,B,則四邊形PACB的面積的最小值為( 。
A、1
B、
3
2
C、2
3
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•保定一模)設P為直線3x+4y+3=0上的動點,過點P作圓C:x2+y2-2x-2y+1=0的兩條切線,切點分別為A,B,則四邊形PACB的面積最小時∠P=( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省唐山一中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:選擇題

設P為直線3x+4y+3=0上的動點,過點P作圓C:x2+y2-2x-2y+1=0的兩條切線,切點分別為A,B,則四邊形PACB的面積的最小值為( )
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年云南省文山州硯山一中高三(上)第二次月考數(shù)學試卷(理科)(解析版) 題型:選擇題

設P為直線3x+4y+3=0上的動點,過點P作圓C:x2+y2-2x-2y+1=0的兩條切線,切點分別為A,B,則四邊形PACB的面積的最小值為( )
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年浙江省杭州市長河高中高三市二測(第六次測試)數(shù)學試卷(理科)(解析版) 題型:選擇題

設P為直線3x+4y+3=0上的動點,過點P作圓C:x2+y2-2x-2y+1=0的兩條切線,切點分別為A,B,則四邊形PACB的面積的最小值為( )
A.1
B.
C.
D.

查看答案和解析>>

同步練習冊答案