【題目】若函數(shù)的定義域為,滿足對任意,有.則稱為“形函數(shù)”;若函數(shù)定義域為,恒大于0,且對任意,恒有,則稱為“對數(shù)形函數(shù)”.
(1)當時,判斷是否是“形函數(shù)”,并說明理由;
(2)當時,判斷是否是“對數(shù)形函數(shù)”,并說明理由;
(3)若函數(shù)是形函數(shù),且滿足對任意都有,問是否是“對數(shù)形函數(shù)”?請加以證明,如果不是,請說明理由.
【答案】(1)不是;詳見解析(2)是;詳見解析(3)是,詳見解析
【解析】
(1)由,作差化簡,得到當,同號時,此時,即可得到結(jié)論;
(2)因為恒成立,可利用分析法和函數(shù)的新定義,作出判定和證明.
(3)由的新定義和,得到,進而得到,再根據(jù)對數(shù)的運算性質(zhì),即可求解.
(1)由題,函數(shù),
則
當,同號時,此時,
此時不滿足,所以不是型函數(shù).
(2)因為恒成立,
要證對任意,,,
即證對任意,,,
即證對任意,,.
因為,
所以是對數(shù)型函數(shù)
(3)函數(shù)是對數(shù)型函數(shù).證明如下:
因為是型函數(shù),所以對任意,,有,
又由對任意,有,所以,
所以,所以,
所以,
所以是對數(shù)型函數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點和上的點,滿足, .
(1)當點在圓上運動時,求點的軌跡方程;
(2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, , 是坐標原點,且時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點與拋物線的焦點重合,且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓的右頂點,過點作兩條直線分別與橢圓交于另一點,若直線的斜率之積為,求證:直線恒過一個定點,并求出這個定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在點處的切線方程是.
(1)求的值及函數(shù)的最大值;
(2)若實數(shù)滿足.
(i)證明:;
(ii)若,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左頂點,右焦點分別為,右準線為,
(1)若直線上不存在點,使為等腰三角形,求橢圓離心率的取值范圍;
(2)在(1)的條件下,當取最大值時,點坐標為,設(shè)是橢圓上的三點,且,求:以線段的中心為原點,過兩點的圓方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點到拋物線焦點的距離為.
(1)求的值;
(2) 設(shè)是拋物線上異于的兩個不同點,過作軸的垂線,與直線交于點,過作軸的垂線,與直線交于點,過作軸的垂線,與直線分別交于點.
求證:①直線的斜率為定值;
②是線段的中點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標方程;
(2)設(shè)圓與直線交于點,若點的坐標為,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com