如圖是正方體的展開圖,則在這個正方體中:

①BM與ED平行;

②CN與BE是異面直線;

③CN與BM成60°角;

④DM與BN垂直.

以上四個命題中,正確命題的序號是(  )

A.①②③ B.②④ C.③④ D.②③④

 

C

【解析】畫出正方體,如圖所示,易知,①②錯誤,③④正確.故選C.

 

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-1直線的傾斜角與斜率、直線方程(解析版) 題型:解答題

已知線段PQ兩端點的坐標分別為(-1,1)、(2,2),若直線l:x+my+m=0與線段PQ有交點,求m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-5直線、平面垂直的判定及性質(zhì)(解析版) 題型:填空題

如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動點,當點M滿足________時,平面MBD⊥平面PCD.(只要填寫一個你認為是正確的條件即可)

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:解答題

如圖,正方體ABCD-A1B1C1D1中,側面對角線AB1,BC1上分別有兩點E,F(xiàn),且B1E=C1F.求證:EF∥平面ABCD.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:選擇題

下列命題正確的是(  )

A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行

B.若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行

C.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行

D.若兩個平面都垂直于第三個平面,則這兩個平面平行

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-3空間點直線平面之間的位置關系(解析版) 題型:填空題

如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,點E、F分別是棱AB、BB1的中點,則直線EF和BC1所成的角是________.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-3空間點直線平面之間的位置關系(解析版) 題型:選擇題

已知m和n是兩條不同的直線,α和β是兩個不重合的平面,那么下面給出的條件中一定能推出m⊥β的是(  )

A.α⊥β,且m?α B.m∥n,且n⊥β

C.α⊥β,且m∥α D.m⊥n,且n∥β

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-7數(shù)學歸納法(解析版) 題型:選擇題

用數(shù)學歸納法證明1+2+3+…+n2=,則當n=k+1時左端應在n=k的基礎上加上(  )

A.k2+1

B.(k+1)2

C.

D.(k2+1)+(k2+2)+…+(k+1)2

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-4基本不等式(解析版) 題型:選擇題

已知b>0,直線(b2+1)x+ay+2=0與直線x-b2y-1=0互相垂直,則ab的最小值等于(  )

A.1 B.2 C.2 D.2

 

查看答案和解析>>

同步練習冊答案