【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益函數(shù)為R(x)= ,其中x是儀器的產(chǎn)量(單位:臺);
(1)將利潤f(x)表示為產(chǎn)量x的函數(shù)(利潤=總收益﹣總成本);
(2)當產(chǎn)量x為多少臺時,公司所獲利潤最大?最大利潤是多少元?

【答案】
(1)解:當0≤x≤400時,

當x>400時,f(x)=80000﹣100x﹣20000=60000﹣100x

所以


(2)解:當0≤x≤400時

當x=300時,f(x)max=25000,

當x>400時,f(x)=60000﹣100x<f(400)=20000<25000

所以當x=300時,f(x)max=25000

答:當產(chǎn)量x為300臺時,公司獲利潤最大,最大利潤為25000元


【解析】(1)利潤=收益﹣成本,由已知分兩段當0≤x≤400時,和當x>400時,求出利潤函數(shù)的解析式;(2)分段求最大值,兩者大者為所求利潤最大值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x)對任意x∈R都有f(x)=f(x+4),當x∈(﹣2,0)時,f(x)=2x , 則f(2016)﹣f(2015)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某賽季,甲、乙兩名籃球運動員都參加了11場比賽,他們每場比賽得分的情況用如圖所示的莖葉圖表示,則甲、乙兩名運動員的中位數(shù)分別為(

A.19、13
B.13、19
C.20、18
D.18、20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下數(shù)表的構(gòu)造思路源于我國南宋數(shù)學家楊輝所著的《詳解九章算術(shù)》一書中的“楊輝三角性”.

該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個數(shù),則這個數(shù)為(
A.2017×22015
B.2017×22014
C.2016×22015
D.2016×22014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重,大氣污染可引起心悸、呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機的對入院50人進行了問卷調(diào)查,得到如下的列聯(lián)表.

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認為患心肺疾病與性別有關(guān)?說明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進行其它方面的排查,記選出患胃病的女性人數(shù)為ξ,求ξ的分布列、數(shù)學期望以及方差.
下面的臨界值表僅供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣ (x∈R),區(qū)間M=[a,b](a<b),集合N={y|y=f (x),x∈M}.若M=N,則b﹣a的值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)=ex(exa)﹣a2x

(1)討論的單調(diào)性;

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三人準備報考某大學,假設(shè)甲考上的概率為 ,甲,丙兩都考不上的概率為 ,乙,丙兩都考上的概率為 ,且三人能否考上相互獨立.
(1)求乙、丙兩人各自考上的概率;
(2)設(shè)X表示甲、乙、丙三人中考上的人數(shù)與沒考上的人數(shù)之差的絕對值,求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,過點作直線交圓兩點,分別過兩點作圓的切線,當兩條切線相交于點時,則點的軌跡方程為__________

查看答案和解析>>

同步練習冊答案