【題目】某種產品的廣告費支出x與銷售額y(單位:百萬元)之間有如下的對應數(shù)據(jù):
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程=x+;
(參考公式:用最小二乘法求線性回歸方程系數(shù)公式 ,.)
【答案】(1)見解析;(2)
【解析】試題分析:(1)根據(jù)表中所給的五組數(shù)據(jù),得到五個點的坐標,在平面直角坐標系中畫出散點圖.(2 )先求出橫標和縱標的平均數(shù),得到這組數(shù)據(jù)的樣本中心點,利用最小二乘法求出線性回歸方程的系數(shù),代入樣本中心點求出的值,寫出線性回歸方程.
試題解析:(1)散點圖如下圖所示:
(2),,,
,,
所求回歸直線方程為
【方法點晴】本題主要考查散點圖的畫法和線性回歸方程,屬于難題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)畫出散點圖,確定兩個變量具有線性相關關系;②計算的值;③計算回歸系數(shù);④寫出回歸直線方程為;(2) 回歸直線過樣本點中心是一條重要性質,利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),若
(1)求函數(shù)的解析式;
(2)畫出函數(shù)的圖象,并說出函數(shù)的單調區(qū)間;
(3)若,求相應的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ;
(1)若f(x)的定義域為 (-∞,+∞), 求實數(shù)a的范圍;
(2)若f(x)的值域為 [0, +∞), 求實數(shù)a的范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,某村積極開展“美麗鄉(xiāng)村生態(tài)家園”建設,現(xiàn)擬在邊長為1千米的正方形地塊ABCD上劃出一片三角形地塊CMN建設美麗鄉(xiāng)村生態(tài)公園,給村民休閑健身提供去處.點M,N分別在邊AB,AD上. (Ⅰ)當點M,N分別是邊AB,AD的中點時,求∠MCN的余弦值;
(Ⅱ)由于村建規(guī)劃及保護生態(tài)環(huán)境的需要,要求△AMN的周長為2千米,請?zhí)骄俊螹CN是否為定值,若是,求出此定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電視臺舉行電視奧運知識大獎賽,比賽分初賽和決賽兩部分.為了增加節(jié)目的趣味性,
初賽采用選手選一題答一題的方式進行,每位選手最多有次選題答題的機會,選手累計答對題或答錯題即終止其初賽的比賽,答對題者直接進入決賽,答錯題者則被淘汰.已知選手甲答題的正確率為.
(1) 求選手甲可進入決賽的概率;
(2) 設選手甲在初賽中答題的個數(shù)為,試寫出的分布列,并求的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,圓,動圓與圓外切并與圓內切,圓心的軌跡為曲線.
(1)求的方程;
(2)是與圓,圓都相切的一條直線,與曲線交于兩點,當圓的半徑最長時,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數(shù).
(I)求f(0)的值和實數(shù)m的值;
(II)當m=1時,判斷函數(shù)f(x)在(﹣1,1)上的單調性,并給出證明;
(III)若且f(b﹣2)+f(2b﹣2)>0,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知奇函數(shù)在區(qū)間上是增函數(shù),且最大值為10,最小值為4,則在區(qū)間上的最大值、最小值分別是( )
A. -4,-10 B. 4,-10
C. 10,4 D. 不確定
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com