tanα=
1
2
,則tan(α+
π
4
)
等于( 。
分析:把所求式子利用兩角和與差的正切函數(shù)公式化簡,將已知tanα的值代入即可求出值.
解答:解:∵tanα=
1
2
,
tan(α+
π
4
)

=
1+tanα
1-tanα

=
1+
1
2
1-
1
2

=3.
故選A
點評:此題考查了兩角和與差的正切函數(shù)公式,以及特殊角的三角函數(shù)值,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若tanα=
1
2
,則tan(α+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα=
1
2
,則tan2α=
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα=
1
2
,則
1+2sinαcosα
sin2α-cos2α
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•海淀區(qū)一模)若tanα=
1
2
,則cos(2α+
π
2
)=
-
4
5
-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足:對于任意x∈R,有f(x)=f(2-x).若tanα=
12
,則f(-10sinαcosα)的值為
 

查看答案和解析>>

同步練習(xí)冊答案