已知f(x)=,設(shè)x,y∈R+,a=f(),b=f(),c=f(),則a,b,c的大小關(guān)系是

[  ]

A.a(chǎn)≤c≤b
B.a(chǎn)≤b≤c
C.c≤b≤a
D.b≤c≤a
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:南通高考密卷·數(shù)學(xué)(理) 題型:044

已知f(x)=x2+x+c,且f[f(x)]=f(x2+x+1)

(1)設(shè)g(x)=f[f(x)],求g(x)的解析式;

(2)設(shè)(x)=g(x)-λf(x),試問:是否存在實(shí)數(shù)λ,使得(x)在(-∞,-1)上是減函數(shù),并且在(-1,-)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省郴州市高三下學(xué)期第六次月考文科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知f(x)=mx(m為常數(shù),m>0且m≠1).

設(shè)f(a1),f(a2),…,f(an)…(n∈N?)是首項(xiàng)為m2,公比為m的等比數(shù)列.

(1)求證:數(shù)列{an}是等差數(shù)列;

(2)若bn=an·f(an),且數(shù)列{bn}的前n項(xiàng)和為Sn,當(dāng)m=2時(shí),求Sn

(3)若cn=f(an)lgf(an),問是否存在m,使得數(shù)列{cn}中每一項(xiàng)恒小于它后面的項(xiàng)?若存在,

求出m的范圍;若不存在,請(qǐng)說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省高三第四次質(zhì)量檢測(cè)文科數(shù)學(xué)試卷 題型:解答題

(本題13分)

已知f(x)=lnx+x2-bx.

(1)若函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;

(2)當(dāng)b=-1時(shí),設(shè)g(x)=f(x)-2x2,求證函數(shù)g(x)只有一個(gè)零點(diǎn).

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三8月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案