【題目】已知函數(shù)在處的切線方程為
(1)若= ,求證:曲線上的任意一點處的切線與直線和直線圍成的三角形面積為定值;
(2)若,是否存在實數(shù),使得對于定義域內(nèi)的任意都成立;
(3)在(2)的條件下,若方程有三個解,求實數(shù)的取值范圍.
【答案】(1)詳見解析(2)
【解析】試題分析:根據(jù)導數(shù)的幾何意義, 為切線的斜率,解出,寫出的切線方程求出三角形的面積為定值.利用求出,假設存在滿足題意,則式子對定義域任一恒成立,解出;代入的值使方程有三個解,化為,畫出的圖象,要求 < <0,解出的范圍.
試題解析:(1)因為 f′(x)=
所以 f′(3)= ,
又 g(x)=f(x+1)=ax+ ,
設g(x)圖象上任意一點P(x0,y0)因為 g′(x)=a﹣ ,
所以切線方程為y﹣(ax0+)=(a﹣)(x﹣x0)
令x=0 得y=; 再令y=ax得 x=2x0,
故三角形面積S=|||2x0|=4,
即三角形面積為定值.
(2)由f(3)=3得a=1,f(x)=x+ ﹣1假設存在滿足題意,
則有x﹣1++m﹣x﹣1+=k
化簡,得 對定義域內(nèi)任意x都成立,
故只有 解得
所以存在實數(shù)m=2,k=0使得f(x)+f(m﹣k)=k對定義域內(nèi)的任意都成立.
(3)由題意知,x﹣1+=t(x2﹣2x+3)|x|
因為x≠0,且x≠1化簡,得 t=
即 =|x|(x﹣1),
如圖可知,﹣ < <0,
所以t<﹣4即為t的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有一塊半圓形空地,開發(fā)商計劃建一個矩形游泳池ABCD及其矩形附屬設施EFGH,并將剩余空地進行綠化,園林局要求綠化面積應最大化.其中半圓的圓心為O,半徑為R,矩形的一邊AB在直徑上,點C、D、G、H在圓周上,E、F在邊CD上,且,設
(1)記游泳池及其附屬設施的占地面積為,求的表達式;
(2)當為何值時,能符合園林局的要求?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù),關于實數(shù)的不等式的解集為.
(1)當時,解關于的不等式: ;
(2)是否存在實數(shù),使得關于的函數(shù)()的最小值為?若存在,求實數(shù)的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面是的菱形,側(cè)面是邊長為2的正三角形,且與底面垂直, 為的中點.
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中, 為坐標原點,曲線: (為參數(shù)),在以平面直角坐標系的原點為極點, 軸的正半軸為極軸,有相同單位長度的極坐標系中,直線: .
(Ⅰ)求曲線的普通方程和直線的直角坐標方程;
(Ⅱ)求與直線平行且與曲線相切的直線的直角坐標方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)當時,求函數(shù)的最大值;
(2)令,其圖象上存在一點,使此處切線的斜率,求實數(shù)的取值范圍;
(3)當, 時,方程有唯一實數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)= , .
(1)若函數(shù)在處取得極值,求的值,并判斷在處取得極大值還是極小值.
(2)若在上恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com