科目:高中數(shù)學 來源:2011-2012學年北京市朝陽區(qū)高三上學期期末考試理科數(shù)學 題型:解答題
(本題滿分14分)
數(shù)列,
(
)由下列條件確定:①
;②當
時,
與
滿足:當
時,
,
;當
時,
,
.
(Ⅰ)若,
,寫出
,并求數(shù)列
的通項公式;
(Ⅱ)在數(shù)列中,若
(
,且
),試用
表示
;
(Ⅲ)在(Ⅰ)的條件下,設(shè)數(shù)列滿足
,
,
(其中
為給定的不小于2的整數(shù)),求證:當
時,恒有
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
數(shù)列,
(
)由下列條件確定:①
;②當
時,
與
滿足:當
時,
,
;當
時,
,
.
(Ⅰ)若,
,寫出
,并求數(shù)列
的通項公式;
(Ⅱ)在數(shù)列中,若
(
,且
),試用
表示
;
(Ⅲ)在(Ⅰ)的條件下,設(shè)數(shù)列滿足
,
,
(其中
為給定的不小于2的整數(shù)),求證:當
時,恒有
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
數(shù)列,
(
)由下列條件確定:①
;②當
時,
與
滿足:當
時,
,
;當
時,
,
.
(Ⅰ)若,
,寫出
,并求數(shù)列
的通項公式;
(Ⅱ)在數(shù)列中,若
(
,且
),試用
表示
;
(Ⅲ)在(Ⅰ)的條件下,設(shè)數(shù)列滿足
,
,
(其中
為給定的不小于2的整數(shù)),求證:當
時,恒有
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知在數(shù)列中,
,且點
在直線
上。
(1)通項公式;(2),求函數(shù)
的最小值。
(3)示數(shù)列的前
項和,試問:是否存在關(guān)于
的整式
,使得
對一切
的自然數(shù)
恒成立?若存在,寫出
的解析式并證明,若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com