(本小題共14分)  
已知拋物線P:x2="2py" (p>0).
(Ⅰ)若拋物線上點到焦點F的距離為
(ⅰ)求拋物線的方程;
(ⅱ)設拋物線的準線與y軸的交點為E,過E作拋物線的切線,求此切線方程;
(Ⅱ)設過焦點F的動直線l交拋物線于A,B兩點,連接,并延長分別交拋物線的準線于C,D兩點,求證:以CD為直徑的圓過焦點F.
解:(Ⅰ)(。┯蓲佄锞定義可知,拋物線上點到焦點F的距離與到準線距離相等,
的距離為3;
,解得
∴ 拋物線的方程為.     ………………4分
(ⅱ)拋物線焦點,拋物線準線與y軸交點為,
顯然過點的拋物線的切線斜率存在,設為,切線方程為
, 消y得, ………………6分
,解得.       ………………7分
∴切線方程為.      ………………8分
(Ⅱ)直線的斜率顯然存在,設,
,
   消y得 .  且
;
, ∴ 直線,                              
聯(lián)立可得, 同理得.……………10分
∵ 焦點,
,                           ………………12分


∴ 以為直徑的圓過焦點.      ………………14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

若P1(x1,y1),P2(x2,y2)是拋物線y2=2px(p>0)上的兩個不同的點,則是P1P2過拋物線焦點的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:,過C上一點M,且與M處的切線垂直的直線稱為C在點M的法線.若C在點M的法線的斜率為,求點M的坐標(x0,y0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的準線方程是(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線焦點F的直線與拋物線交于A、B兩點,若A、B在拋物線準線上的射影為、,則∠=
A. B. C.      D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若拋物線的焦點與橢圓的右焦點重合,則的值為 (   )
A  4                B  2               C –4              D –2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的準線方程為
A.x=2B.x=2C.y=2D.y=2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線y =" x2" 與直線y = 1所圍成封閉圖形的面積為          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線,過點的直線交拋物線于點、,
y軸于點,若,則 (   )
A.-1B.C.1D.—2

查看答案和解析>>

同步練習冊答案