【題目】[選修4-4:坐標系與參數(shù)方程]

平面直角坐標系中,射線,曲線的參數(shù)方程為為參數(shù)),曲線的方程為;以原點為極點,軸的非負半軸為極軸建立極坐標系.曲線的極坐標方程為.

(Ⅰ)寫出射線的極坐標方程以及曲線的普通方程;

(Ⅱ)已知射線交于,與交于,,求的值.

【答案】(Ⅰ) ;(Ⅱ).

【解析】

(Ⅰ)依題意,根據(jù)極坐標與直角坐標的互化公式,以及參數(shù)方程與普通方程的互化,即可得到射線的極坐標方程以及曲線的普通方程;

(Ⅱ)曲線的方程為,得到曲線的極坐標方程為,根據(jù)極徑的幾何意義,即可求解。

(Ⅰ)依題意,因為射線,故射線;

因為曲線為參數(shù)),可得曲線.

(Ⅱ)曲線的方程為,故,

故曲線的極坐標方程為,設(shè)點對應(yīng)的極徑分別為,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.

1)求橢圓的標準方程;

2)已知點,和平面內(nèi)一點),過點任作直線與橢圓相交于, 兩點,設(shè)直線, 的斜率分別為, ,試求滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知)的方格表中的每個元素都是絕對值不大于1的實數(shù),且方格表中所有元素之和等于0,試求最小的非負實數(shù),使得每個這樣的方格表中必有一行或一列,其元素之和的絕對值不大于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國際奧委會將于2017915日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地,目前德國漢堡,美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出,某機構(gòu)為調(diào)查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計如下:

支持

不支持

合計

年齡不大于50

80

年齡大于50

10

合計

70

100

1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運有關(guān)?

3)已知在被調(diào)查的年齡大于50歲的支持者中有6名女性,其中2名是女教師.現(xiàn)從這6名女性中隨機抽取2名,求恰有1名女教師的概率.

附:,

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)甲、乙兩位同學上學期間,每天7:30之前到校的概率均為.假定甲、乙兩位同學到校情況互不影響,且任一同學每天到校情況相互獨立.

(Ⅰ)用表示甲同學上學期間的三天中7:30之前到校的天數(shù),求隨機變量的分布列和數(shù)學期望;

(Ⅱ)設(shè)為事件“上學期間的三天中,甲同學在7:30之前到校的天數(shù)比乙同學在7:30之前到校的天數(shù)恰好多2”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為[1,5],部分對應(yīng)值如下表,的導函數(shù)的圖象如圖所示,下列關(guān)于的命題正確的是(

0

4

5

1

2

2

1

A.函數(shù)的極大值點為0,4;

B.函數(shù)[0,2]上是減函數(shù);

C.如果當時,的最大值是2,那么的最大值為4;

D.函數(shù)的零點個數(shù)可能為0、1、23、4個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在任何個連續(xù)的正整數(shù)中,使得必有一數(shù)其各位數(shù)字之和是7的倍數(shù)成立的最小的正整數(shù)______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若函數(shù)是增函數(shù),則稱函數(shù)具有性質(zhì)A

,求的解析式,并判斷是否具有性質(zhì)A;

判斷命題“減函數(shù)不具有性質(zhì)A”是否真命題,并說明理由;

若函數(shù)具有性質(zhì)A,求實數(shù)k的取值范圍,并討論此時函數(shù)在區(qū)間上零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次測驗,將20名學生平均分為兩組,測驗結(jié)果兩組學生成績的平均分和標準差分別為906;80,4.則這20名學生成績的方差為_____

查看答案和解析>>

同步練習冊答案