已知拋物線的準(zhǔn)線與圓相切,則p的值為(   )
A.B.1C.2D.4
C

分析:根據(jù)拋物線的標(biāo)準(zhǔn)方程可知準(zhǔn)線方程為x="-" ,根據(jù)拋物線的準(zhǔn)線與圓相切可知3+ =4求得p.
解:拋物線y2=2px(p>0)的準(zhǔn)線方程為x=-,
因?yàn)閽佄锞y2=2px(p>0)的準(zhǔn)線與圓(x-3)2+y2=16相切,
所以3+=4,p=2;
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線過拋物線的焦點(diǎn),交拋物線于兩點(diǎn),且點(diǎn)軸上方,
若直線的傾斜角,則的取值范圍是(   )
A. B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面區(qū)域是由雙曲線的兩條漸近線和拋物線的準(zhǔn)線所圍
成的三角形(含邊界與內(nèi)部).若點(diǎn),則目標(biāo)函數(shù)的最大值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題10分)已知拋物線C:,過原點(diǎn)O作拋物線C的切線使切點(diǎn)P在第一象限,
(1)求k的值;
(2)過點(diǎn)P作切線的垂線,求它與拋物線C的另一個(gè)交點(diǎn)Q的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)在直線上移動(dòng),當(dāng)取最小值時(shí),過點(diǎn)P引圓的切線,則此切線長等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在中,,,                A
,則的值為(     )                   B             D      C
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(文科) 拋物線上兩點(diǎn)處的切線交于點(diǎn),則的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)閱讀下列材料,解決數(shù)學(xué)問題.圓錐曲線具有非常漂亮的光學(xué)性質(zhì),被人們廣泛地應(yīng)用于各種設(shè)計(jì)之中,比如橢圓鏡面用來制作電影放映機(jī)的聚光燈,拋物面用來制作探照燈等,它們的截面分別是橢圓和拋物線.雙曲線也具有非常好的光學(xué)性質(zhì),從雙曲線的一個(gè)焦點(diǎn)發(fā)出的光線,經(jīng)過雙曲線反射后,反射光線是發(fā)散的,它們好像是從另一個(gè)焦點(diǎn)射出的一樣,如圖(1)所示.反比例函數(shù)的圖像是以直線為軸,以坐標(biāo)軸為漸近線的等軸雙曲線,記作C.
(Ⅰ)求曲線C的離心率及焦點(diǎn)坐標(biāo);
(Ⅱ)如圖(2),從曲線C的焦點(diǎn)F處發(fā)出的光線經(jīng)雙曲線反射后得到的反射光線與入射光線垂直,求入射光線的方程.
(1)          (2) 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



如圖,設(shè)是圓珠筆上的動(dòng)點(diǎn),點(diǎn)D是軸上的投影,M為D上一點(diǎn),且
(Ⅰ)當(dāng)的在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長度。

查看答案和解析>>

同步練習(xí)冊(cè)答案