【題目】為了了解小學生的體能情況,抽取了某小學同年級部分學生進行跳繩測試,將所得數據整理后,畫出頻率分布直方圖如圖所示,已知圖中從左到右前三個小組的頻率分別是0.1,0.3,0.4,第一小組的頻數為5.
(1)求第四小組的頻率;
(2)參加這次測試的學生人數是多少?
(3)在這次測試中,學生跳繩次數的中位數落在第幾小組內?
【答案】
(1)解:第四小組的頻率=1﹣(0.1+0.3+0.4)=0.2.
(2)解:設參加這次測試的學生人數是n,則有
n= =5÷0.1=50(人).(3)
(3)解:因為0.1×50=5,0.3×50=15,0.4×50=20,0.2×50=10,
即第一、第二、第三、第四小組的頻數分別為5、15、20、10,
所以學生跳繩次數的中位數落在第三小組內.
【解析】(1)由已知中從左到右前三個小組的頻率分別是0.1,0.3,0.4,結合四組頻率和為1,即可得到第四小組的頻率;(2)由已知中第一小組的頻數為5及第一組頻率為0.1,代入樣本容量= ,即可得到參加這次測試的學生人數;(3)由(2)的結論,我們可以求出第一、第二、第三、第四小組的頻數,再結合中位數的定義,即可得到答案.
【考點精析】解答此題的關鍵在于理解頻率分布直方圖的相關知識,掌握頻率分布表和頻率分布直方圖,是對相同數據的兩種不同表達方式.用緊湊的表格改變數據的排列方式和構成形式,可展示數據的分布情況.通過作圖既可以從數據中提取信息,又可以利用圖形傳遞信息,以及對平均數、中位數、眾數的理解,了解⑴平均數、眾數和中位數都是描述一組數據集中趨勢的量;⑵平均數、眾數和中位數都有單位;⑶平均數反映一組數據的平均水平,與這組數據中的每個數都有關系,所以最為重要,應用最廣;⑷中位數不受個別偏大或偏小數據的影響;⑸眾數與各組數據出現(xiàn)的頻數有關,不受個別數據的影響,有時是我們最為關心的數據.
科目:高中數學 來源: 題型:
【題目】如圖所示,在正三棱柱ABC﹣A1B1C1中,點D在邊BC上,AD⊥C1D.
(1)求證:平面ADC1⊥平面BCC1B1;
(2)如果點E是B1C1的中點,求證:AE∥平面ADC1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax+bx(a>0,b>0,a≠1,b≠1). (Ⅰ)設 ,求方程f(x)=2的根;
(Ⅱ)設 ,函數g(x)=f(x)﹣2,已知b>3時存在x0∈(﹣1,0)使得g(x0)<0.若g(x)=0有且只有一個零點,求b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC中,角A,B,C的對邊分別是a,b,c且滿足(2a﹣c)cosB=bcosC,
(1)求角B的大;
(2)若△ABC的面積為為 且b= ,求a+c的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(3x+ ).
(1)求f(x)的單調遞增區(qū)間;
(2)若α是第二象限角,f( )= cos(α+ )cos2α,求cosα﹣sinα的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=asinxbcosx(a、b為常數,a≠0,x∈R)在x= 處取得最小值,則函數y=f( x)是( )
A.偶函數且它的圖象關于點(π,0)對稱
B.偶函數且它的圖象關于點 對稱
C.奇函數且它的圖象關于點 對稱
D.奇函數且它的圖象關于點(π,0)對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)對任意的x∈(﹣ , )滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數f(x)的導函數),則下列不等式成立的是( )
A. f(﹣ )<f(﹣ )
B. f( )<f( )
C.f(0)>2f( )
D.f(0)> f( )
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com