求y=x2與y=4圍成的圖形的面積.
考點(diǎn):定積分在求面積中的應(yīng)用
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:首先我們要聯(lián)立兩個(gè)曲線的方程,判斷他們的交點(diǎn),以確定積分公式中x的取值范圍,再根據(jù)定積分的幾何意義,所求圖形的面積為S=2∫0 2( 4-x2)dx,計(jì)算后即得答案.
解答: 解:y=x2與y=4交點(diǎn)坐標(biāo)為(2,4)和(-2,4),所以y=x2與y=4圍成的圖形的面積S=2∫0 2( 4-x2)dx=2(4x-
1
3
x3
)|
 
2
0
=
32
3
;
點(diǎn)評(píng):本題考查了定積分求曲邊梯形的面積;在直角坐標(biāo)系下平面圖形的面積的四個(gè)步驟:1.作圖象;2.求交點(diǎn);3.用定積分表示所求的面積;4.微積分基本定理求定積分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=2px的焦點(diǎn)與雙曲線
x2
3
-y2=1的右焦點(diǎn)重合,則該拋物線的準(zhǔn)線方程為( 。
A、x=-1B、x=-2
C、x=1D、x=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+2x+3a存在零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,
1
3
B、(
1
3
,+∞)
C、(-∞,
1
3
]
D、[
1
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lnx-2的導(dǎo)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列a,b,5a,7,3b,…c成等差數(shù)列,且a+b+5a+7+3b+…+c=2500,求a,b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)函數(shù).
(1)y=ln
x2-1
;
(2)y=sin2(2x+
π
3
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
3
x+
1
2
,h(x)=
x
,設(shè)n∈N*,證明:f(n)h(n)-[h(1)+h(2)+…+h(n)]
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(10,-5),
b
=(3,2),
c
=(-2,2),試用
b
c
表示
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是⊙O的一條切線,切點(diǎn)為B,直線ADE,CFD,CGE都是⊙O的割線,已知AC=AB.
(1)求證:FG∥AC;
(2)若CG=1,CD=4.求
DE
GF
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案