已知不等式的解集為,
(1)求的值;
(2)(文科做)解關于的不等式:
(2)(理科做)解關于的不等式:.
(1)m+2n=7
(2)(文科做)a<-3時,不等式的解集為;
a>-3時,不等式的解集為;
a=-3時,不等式的解集為
(2)(理科做)
當時,原不等式的解集為;
當時,原不等式的解集為;
當時,原不等式的解集為,或;
當時,原不等式的解集為,或.
【解析】
試題分析:(1)由不等式 的解集為知
關于x的方程的兩根為-1和n,且
由根與系數關系,得 ∴,
∴ m+2n=7
(2)(文科做)由(1)知關于不等式可以化為
,
即
故當-a>3,即a<-3時,不等式的解集為;
當-a<3,即a>-3時,不等式的解集為;
當-a=3,即a=-3時,不等式的解集為
(2)(理科做)解:原不等式化為,
① 當時,原不等式化為,解得;
② 當時,原不等式化為,且,解得;
③ 當時,原不等式化為,且,解得或;
④ 當時,原不等式化為,解得且;
⑤當時,原不等式化為,且,解得或;
綜上所述,當時,原不等式的解集為;
當時,原不等式的解集為;
當時,原不等式的解集為,或;
當時,原不等式的解集為,或.
考點:含參數一元二次不等式的解法。
點評:中檔題,含參數一元二次不等式的求解,首先應考慮因式分解法,討論根的大小,寫出解集。
科目:高中數學 來源:2014屆河北省高一上學期期末考試理科數學 題型:解答題
. (本小題滿分10分)已知不等式的解集為
(1)求、的值;
(2)若函數在區(qū)間上遞增,求關于的不等式的解集。
查看答案和解析>>
科目:高中數學 來源:2010年江蘇省高二下學期期末考試數學文 題型:解答題
(本小題滿分14分:8+6)
已知不等式的解集為A,不等式的解集為B
(1)求集合A及B;
(2)若,求實數a的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com