【題目】正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別是AD,DD1的中點,AB=4,則過B,E,F(xiàn)的平面截該正方體所得的截面周長為(
A.6 +4
B.6 +2
C.3 +4
D.3 +2

【答案】A
【解析】解:∵正方體ABCD﹣A1B1C1D1中,E、F分別是棱AD、DD1的中點, ∴EF∥AD1∥BC1
∵EF平面BCC1 , BC1平面BCC1 ,
∴EF∥平面BCC1 ,
由線面平行性質(zhì)定理,過EF且過B的平面與面BCC1的交線l平行于EF,l即為BC1
由正方體的邊長為4,可得截面是以BE=C1F=2 為腰,EF=2 為上底,BC1=2EF=4 為下底的等腰梯形,故周長為6 +4 ,
故選A.

【考點精析】通過靈活運用平面的基本性質(zhì)及推論,掌握如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi);過不在一條直線上的三點,有且只有一個平面;如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)方程(m+1)|ex﹣1|﹣1=0的兩根分別為x1 , x2(x1<x2),方程|ex﹣1|﹣m=0的兩根分別為x3 , x4(x3<x4).若m∈(0, ),則(x4+x1)﹣(x3+x2)的取值范圍為(
A.(﹣∞,0)
B.(﹣∞,ln
C.(ln ,0)
D.(﹣∞,﹣1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在(0,+∞)的函數(shù)f(x)的導(dǎo)函數(shù)是f'(x),且x4f'(x)+3x3f(x)=ex , ,則x>0時,f(x)(
A.有極大值,無極小值
B.有極小值,無極大值
C.既無極大值,又無極小值
D.既有極大值,又有極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy 中,橢圓G的中心為坐標原點,左焦點為F1(﹣1,0),離心率e=
(1)求橢圓G 的標準方程;
(2)已知直線l1:y=kx+m1與橢圓G交于 A,B兩點,直線l2:y=kx+m2(m1≠m2)與橢圓G交于C,D兩點,且|AB|=|CD|,如圖所示. ①證明:m1+m2=0;
②求四邊形ABCD 的面積S 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P(2,1)與Q關(guān)于原點O對稱,直線PM,QM相交于點M,且它們的斜率之積是﹣ (Ⅰ)求點M的軌跡C的方程;
(Ⅱ)過P作直線l交軌跡C于另一點A,求DPAO的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c有兩個極值點x1 , x2 , 若x2<f(x1)<x1 , 則關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實根個數(shù)可能為(
A.3,4,5
B.4,5,6
C.2,4,5
D.2,3,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x+3|.
(1)解不等式f(x)≥8;
(2)若不等式f(x)<a2﹣3a的解集不是空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進行解答.選題情況如右表:(單位:人)

幾何題

代數(shù)題

總計

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計

30

20

50


(1)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關(guān)?
(2)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在5~7分鐘,乙每次解答一道幾何題所用的時間在6~8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(3)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進行全程研究,記甲、乙兩女生被抽到的人數(shù)為 X,求 X的分布列及數(shù)學(xué)期望 EX. 附表及公式

P(k2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以A,B,C,D,E,F(xiàn)為頂點的多面體中,AF⊥平面ABCD,DE⊥平面ABCD,AD∥BC,AB=CD,∠ABC=60°,BC=AF=2AD=4DE=4.
(Ⅰ)請在圖中作出平面α,使得DEα,且BF∥α,并說明理由;
(Ⅱ)求直線EF與平面BCE所成角的正弦值.

查看答案和解析>>

同步練習冊答案