精英家教網(wǎng)如圖,在三棱柱ABC-A'B'C'中,若E、F分別為AB、AC的中點(diǎn),平面EB'C'F將三棱柱分成體積為V1、V2的兩部分,那么V1:V2為( 。
A、3:2B、7:5C、8:5D、9:5
分析:由已知中平面EB'C'F將三棱柱分成一個(gè)棱臺(tái)(體積為V1)和一個(gè)不規(guī)則幾何體,(體積為V2),我們根據(jù)棱柱體積公式,和棱臺(tái)的體積公式,結(jié)合組合體的體積求法,分別計(jì)算出V1,V2的表達(dá)式,即可得到答案.
解答:解:設(shè)S△AEF=x,則
S△ABC=S△A1B1C1=4x,
S□EFBC=3x
V1:V2=
1
3
(4x+2x+x):4x-[
1
3
(4x+2x+x)]=7:5
故選B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是棱柱的體積,棱臺(tái)的體積,組合體的體積,其中分析出面EB'C'F將三棱柱分成一個(gè)棱臺(tái)(體積為V1)和一個(gè)不規(guī)則幾何體,(體積為V2),是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,則此三棱柱的側(cè)視圖的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=60°,四邊形BCC1B1為矩形,若AB⊥BC且AB=4,BC=3
(1)求證:平面A1CB⊥平面ACB1
(2)求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•通州區(qū)一模)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一點(diǎn).
(Ⅰ)求證:BC⊥AM;
(Ⅱ)若N是AB上一點(diǎn),且
AN
AB
=
CM
CC1
,求證:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分別在線段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求證:BC⊥AC1;
(2)試探究:在AC上是否存在點(diǎn)F,滿足EF∥平面A1ABB1,若存在,請(qǐng)指出點(diǎn)F的位置,并給出證明;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案