已知函數(shù)f(x)=ax3+bx+c在x=1處取得極值c-4.
(1)求a,b;
(2)設(shè)函數(shù)y=f(x)為R上的奇函數(shù),求函數(shù)f(x)在區(qū)間(-2,0)上的極值.
分析:(1)對(duì)f(x)求導(dǎo)數(shù)f′(x),導(dǎo)數(shù)等于0時(shí)f(x)取得極值,可以得到a,b的值;
(2)由f(x)是奇函數(shù),可得c=0,從而得f(x)解析式,求f′(x),根據(jù)f′(x)的正負(fù)判定f(x)的極值情況并求出.
解答:解:(1)∵f(x)=ax3+bx+c,
∴f′(x)=3ax2+b;
又f(x)在x=1處取得極值c-4,
f(1)=c-4
f′(1)=0
,即
a+b+c=c-4
3a+b=0
,∴
a=2
b=-6
;
(2)∵y=f(x)為R上的奇函數(shù),
∴f(-x)=-f(x),即a(-x)3+b(-x)+c=-(ax3+bx+c),
∴c=0,∴f(x)=2x3-6x;
∴f′(x)=6x2-6=6(x+1)(x-1),
令f′(x)=0,得x=-1或x=1,∵x∈(-2,0),∴取x=-1;
∴當(dāng)x∈(-2,-1),f′(x)>0,當(dāng)x∈(-1,0)時(shí),f′(x)<0;
∴f(x)在x=-1處有極大值為f(-1)=-2+6=4,無(wú)極小值.
點(diǎn)評(píng):本題考查了根據(jù)導(dǎo)函數(shù)f′(x)的正負(fù)來(lái)判定原函數(shù)f(x)的增減性與求函數(shù)f(x)的極值的問(wèn)題,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿(mǎn)足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案