已知函數(shù).
(Ⅰ)求的最小值;
(Ⅱ)若對(duì)所有都有
,求實(shí)數(shù)
的取值范圍.
(1)當(dāng)時(shí),
取得最小值
.
(2)
【解析】
試題分析:(1)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013052709304462452298/SYS201305270931237820152867_DA.files/image006.png">, 1分
的導(dǎo)數(shù)
.
2分
令,解得
;令
,解得
.
從而在
單調(diào)遞減,在
單調(diào)遞增. 4分
所以,當(dāng)時(shí),
取得最小值
.
5分
(2)依題意,得在
上恒成立,
即不等式對(duì)于
恒成立
. 7分
令, 則
.
9分
當(dāng)時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013052709304462452298/SYS201305270931237820152867_DA.files/image021.png">,
故是
上的增函數(shù), 所以
的最小值是
, 11分
所以的取值范圍是
.
12分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)導(dǎo)數(shù)的符號(hào)判定函數(shù)單調(diào)性,以及函數(shù)的最值,進(jìn)而得到參數(shù)的范圍,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
3 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高三上學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若對(duì)任意,函數(shù)
在
上都有三個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年廣東省東莞市教育局教研室高三上學(xué)期數(shù)學(xué)文卷 題型:解答題
(本小題滿分分)
已知函數(shù).
(1)求函數(shù)的最大值;
(2)在中,
,角
滿足
,求
的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com