(本小題滿分13分)直三棱柱的直觀圖及其正視圖、側(cè)視圖、俯視圖如圖所示.
(1)求證:面; (2)求點到平面的距離;
(3)求二面角的大小.
(1)同解析(2)點到平面的距離 (3)二面角的平面角為.
【解析】
解法一、(1)如圖所示,建立空間直角坐標系
則,,
, 平面,……………………1分
…………………………2分
∴, ……………………… 3分
又∵平面
∴平面 ………………………4分(或證明
(2)設(shè)、、為平面的法向量
∵
|
|
∴取 ………………………7分
∵
∴點到平面的距離 ……………9分
(3)∵三棱柱為直三棱柱,
∴平面的法向量 ………………………10分
又平面的法向量
∴ ……………………12分
∴二面角的大小為. ……………………13分
解法二、(1)連接,∵、為,的中點,
∴.
面面
面
(2)設(shè),連接,
|
|
|
∵面,∴
∴面,∴面.
∴到平面的距離.
(3)過引交于,連接,則
為二面角的平面角
∵
∴,∴ ∴二面角的平面角為.
科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調(diào)理科數(shù)學 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項.
(1) 求函數(shù)的表達式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com