【題目】如圖,在三棱錐中,分別是的中點,平面平面,,是邊長為2的正三角形,.
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)利用空間向量,通過計算進(jìn)行證明:先建立空間直角坐標(biāo)系,設(shè)各點坐標(biāo),表示,以及平面中兩相交直線,,利用向量數(shù)量積計算證明,,最后根據(jù)線面垂直判定定理得結(jié)論(2)利用方程組求出各面法向量,利用向量數(shù)量積求向量夾角余弦值,最后根據(jù)二面角與向量夾角關(guān)系確定二面角余弦值
試題解析:(Ⅰ)證明:如圖,建立空間直角坐標(biāo)系,則,
,
,得,
,得,
CA,CK是平面KAC內(nèi)的兩條相交直線,
所以平面KAC.
(Ⅱ)解:平面BDF的一個法向量,
平面BDE(即平面ABK)的一個法向量為
,
所以二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點為F1有一小球A 從F1處以速度v開始沿直線運動,經(jīng)橢圓壁反射(無論經(jīng)過幾次反射速度大小始終保持不變,小球半徑忽略不計),若小球第一次回到F1時,它所用的最長時間是最短時間的5倍,則橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(n)=1+ ,g(n)= ﹣ ,n∈N* .
(1)當(dāng)n=1,2,3時,試比較f(n)與g(n)的大小關(guān)系;
(2)猜想f(n)與g(n)的大小關(guān)系,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】向量的運算常常與實數(shù)運算進(jìn)行類比,下列類比推理中結(jié)論正確的是( )
A.“若ac=bc(c≠0),則a=b”類比推出“若 = ( ≠ ),則 = ”
B.“在實數(shù)中有(a+b)c=ac+bc”類比推出“在向量中( + ) = + ”
C.“在實數(shù)中有(ab)c=a(bc)”類比推出“在向量中( ) = ( )”
D.“若ab=0,則a=0或b=0”類比推出“若 =0,則 = 或 = ”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為 與p,且乙投球2次均未命中的概率為 .
(1)求乙投球的命中率p;
(2)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P(1,m)在拋物線C:y2=2Px(P>0)上,F(xiàn)為焦點,且|PF|=3.
(1)求拋物線C的方程;
(2)過點T(4,0)的直線l交拋物線C于A,B兩點,O為坐標(biāo)原點.
(。┣ 的值;
(ⅱ)若以A為圓心,|AT|為半徑的圓與y軸交于M,N兩點,求△MNF的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}. 若A∩B={2},求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某產(chǎn)品的歷史收益率的頻率分布直方圖如圖所示.
(1)試估計該產(chǎn)品收益率的中位數(shù);
(2)若該產(chǎn)品的售價(元)與銷量(萬份)之間有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如表5組與的對應(yīng)數(shù)據(jù):
售價(元) | 25 | 30 | 38 | 45 | 52 |
銷量(萬份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
根據(jù)表中數(shù)據(jù)算出關(guān)于的線性回歸方程為,求的值;
(3)若從表中五組銷量數(shù)據(jù)中隨機(jī)抽取兩組,記其中銷量超過6萬份的組數(shù)為,求的分布列及期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com