在等邊中,若以為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn),則該橢圓的離心率為
.

試題分析:設(shè)三角形的邊長(zhǎng)為.則橢圓的.故填.通過(guò)假設(shè)三角形的邊長(zhǎng)寫(xiě)出橢圓對(duì)應(yīng)的長(zhǎng)半軸,短半軸,半焦距即可求得離心率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知?jiǎng)訄A過(guò)定點(diǎn)P(1,0),且與定直線l:x=-1相切,點(diǎn)C在l上.
(1)求動(dòng)圓圓心的軌跡M的方程;
(2)設(shè)過(guò)點(diǎn)P,且斜率為-的直線與曲線M相交于A、B兩點(diǎn). 問(wèn):△ABC能否為正三角形?若能,求點(diǎn)C的坐標(biāo);若不能,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系中,已知中心在原點(diǎn),離心率為的橢圓E的一個(gè)焦點(diǎn)為圓的圓心.
⑴求橢圓E的方程;
⑵設(shè)P是橢圓E上一點(diǎn),過(guò)P作兩條斜率之積為的直線,當(dāng)直線都與圓相切時(shí),求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對(duì)稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)直線AP和BP分別與直線x=3交于點(diǎn)M,N,問(wèn):是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線,求曲線過(guò)點(diǎn)的切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左焦點(diǎn)為,右焦點(diǎn)為

(Ⅰ)設(shè)直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn)P,線段的垂直平分線交于點(diǎn)M,求點(diǎn)M的軌跡的方程;
(Ⅱ)設(shè)為坐標(biāo)原點(diǎn),取曲線上不同于的點(diǎn),以為直徑作圓與相交另外一點(diǎn),求該圓的面積最小時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓E:,橢圓E的內(nèi)接平行四邊形的一組對(duì)邊分別經(jīng)過(guò)它的兩個(gè)焦點(diǎn)(如圖),則這個(gè)平行四邊形面積的最大值是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓與雙曲線有共同的焦點(diǎn),,橢圓的一個(gè)短軸端點(diǎn)為,直線與雙曲線的一條漸近線平行,橢圓與雙曲線的離心率分別為,則取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1、F2分別是雙曲線的左、右焦點(diǎn),P為雙曲線右支上的任意一點(diǎn)且,則雙曲線離心率的取值范圍是(    )
A.(1,2]B.[2 +)C.(1,3]D.[3,+)

查看答案和解析>>

同步練習(xí)冊(cè)答案