【題目】已知函數(shù)的定義域?yàn)?/span>,若存在區(qū)間,使得稱區(qū)間為函數(shù)和諧區(qū)間”.

1)請(qǐng)直接寫出函數(shù)的所有的和諧區(qū)間;

2)若為函數(shù)的一個(gè)和諧區(qū)間,求的值;

3)求函數(shù)的所有的和諧區(qū)間”.

【答案】(1)函數(shù)的所有和諧區(qū)間;(2)2;

(3)的所有和諧區(qū)間

【解析】

(1)根據(jù)三次函數(shù)的圖像與“和諧區(qū)間”的定義觀察寫出即可.
(2)畫圖分析的圖像性質(zhì)即可.
(3)畫出圖像,并根據(jù)“和諧區(qū)間”的定義利用函數(shù)分析即可.

(1)函數(shù)的定義域?yàn)?/span>R,由題意令,

∴函數(shù)的所有和諧區(qū)間

(2) 為函數(shù)的一個(gè)和諧區(qū)間,

,解得,

畫出圖形,如圖(1)所示,

由題意知時(shí)滿足題意,

m的值為2;

(3)函數(shù),定義域?yàn)?/span>R,

,解得,

畫出函數(shù)f(x)的圖象如圖(2)所示,

f(x)的所有和諧區(qū)間

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是邊長(zhǎng)為的正方形,的中點(diǎn),點(diǎn)沿著路徑在正方形邊上運(yùn)動(dòng)所經(jīng)過(guò)的路程為,的面積為.

1)求的解析式及定義域;

2)求面積的最大值及此時(shí)點(diǎn)位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線x2=1.

(1)若一橢圓與該雙曲線共焦點(diǎn),且有一交點(diǎn)P(2,3),求橢圓方程.

(2)設(shè)(1)中橢圓的左、右頂點(diǎn)分別為A、B,右焦點(diǎn)為F,直線l為橢圓的右準(zhǔn)線,Nl上的一動(dòng)點(diǎn),且在x軸上方,直線AN與橢圓交于點(diǎn)M.若AMMN,求AMB的余弦值;

(3)設(shè)過(guò)A、FN三點(diǎn)的圓與y軸交于P、Q兩點(diǎn),當(dāng)線段PQ的中點(diǎn)為(0,9)時(shí),求這個(gè)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別是雙曲線的左頂點(diǎn)、右焦點(diǎn),過(guò)的直線的一條漸近線垂直且與另一條漸近線和軸分別交于,兩點(diǎn).若,則的離心率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)平面中, 的兩個(gè)頂點(diǎn)為,平面內(nèi)兩點(diǎn)、同時(shí)滿足:①;②;③

(1)求頂點(diǎn)的軌跡的方程;

(2)過(guò)點(diǎn)作兩條互相垂直的直線,直線與點(diǎn)的軌跡相交弦分別為,設(shè)弦的中點(diǎn)分別為

①求四邊形的面積的最小值;

②試問(wèn):直線是否恒過(guò)一個(gè)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出該定點(diǎn),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)一種化工產(chǎn)品,該產(chǎn)品若以每噸10萬(wàn)元的價(jià)格銷售,每年可售出1000噸,若將該產(chǎn)品每噸分價(jià)格上漲,則每年的銷售數(shù)量將減少,其中m為正常數(shù),銷售的總金額為y萬(wàn)元.

1)當(dāng)時(shí),該產(chǎn)品每噸的價(jià)格上漲百分之幾,可使銷售總金額最大?

2)當(dāng)時(shí),若能使銷售總金額比漲價(jià)前增加,試設(shè)定m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是偶函數(shù).

(1)求不等式的解集;

(2)若不等式對(duì)任意實(shí)數(shù)成立,求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù),若上有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于x的方程2x2﹣ax﹣2=0的兩根分別為α、β(αβ),函數(shù)

(1)證明f(x)在區(qū)間(α,β)上是增函數(shù);

(2)當(dāng)a為何值時(shí),f(x)在區(qū)間[α,β]上的最大值與最小值之差最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究機(jī)構(gòu)為了了解各年齡層對(duì)高考改革方案的關(guān)注程度,隨機(jī)選取了200名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,).

(1)求選取的市民年齡在內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再?gòu)闹羞x取2人在座談會(huì)中作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案