已知動圓
(1)當時,求經(jīng)過原點且與圓相切的直線的方程;
(2)若圓與圓內(nèi)切,求實數(shù)的值.

(1)(2)

解析試題分析:(1)時圓心為,半徑為2。當過原點的直線斜率不存在時恰好與此圓相切,此時切線方程為;當過原點的直線斜率存在時設(shè)直線方程為,當直線與圓相切時圓心到直線的距離等于半徑2,可求得的值,從而可得切線方程。(2)圓的圓心,半徑為;圓的圓心,半徑為4。當兩圓內(nèi)切時兩圓心距等于兩半徑的差的絕對值,從而可得的值。
(1)
當直線的斜率不存在時,方程為,(3分)
當直線的斜率存在時,設(shè)方程為,由題意得
所以方程為(6分)
(2),由題意得,(9分)
兩邊平方解得
考點:1直線和圓相切;2點到線的距離;3兩圓的位置關(guān)系。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知圓的方程為,直線,設(shè)點
(1)若點在圓外,試判斷直線與圓的位置關(guān)系;
(2)若點在圓上,且,,過點作直線分別交圓兩點,且直線的斜率互為相反數(shù);
① 若直線過點,求的值;
② 試問:不論直線的斜率怎樣變化,直線的斜率是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點,圓:,過點的動直線與圓交于兩點,線段的中點為,為坐標原點.
(1)求的軌跡方程;
(2)當時,求的方程及的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知實數(shù)
(1)求直線y=ax+b不經(jīng)過第四象限的概率:
(2)求直線y=ax+b與圓有公共點的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓C0(a>b>0,a,b為常數(shù)),動圓C1:x2+y2=t12,b<t1<a.點A1,A2分別為C0的左,右頂點,C1與C0相交于A,B,C,D四點.

(1)求直線AA1與直線A2B交點M的軌跡方程;
(2)設(shè)動圓C2:x2+y2=t22與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:t12+t22為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:圓C過點A(6,0),B(1,5)且圓心在直線上,求圓C的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求過直線與已知圓的交點,且在兩坐標軸上的四個截距之和為8的圓的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓,設(shè)點是直線上的兩點,它們的橫坐標分別是,點在線段上,過點作圓的切線,切點為
(1)若,求直線的方程;
(2)經(jīng)過三點的圓的圓心是,求線段(為坐標原點)長的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知直線與圓相交于兩點,若點M在圓上,且有為坐標原點),則實數(shù)=    ▲   .

查看答案和解析>>

同步練習冊答案