一個(gè)頂點(diǎn)是,且離心率為的橢圓的標(biāo)準(zhǔn)方程是________________。

試題分析:若為長(zhǎng)軸頂點(diǎn),則所以橢圓的標(biāo)準(zhǔn)方程為
為短軸頂點(diǎn),則,所以橢圓的標(biāo)準(zhǔn)方程為.
所以橢圓的標(biāo)準(zhǔn)方程為.
點(diǎn)評(píng):橢圓有四個(gè)頂點(diǎn),只知道其中的一個(gè)并不能確定焦點(diǎn)在哪個(gè)坐標(biāo)軸上,所以要分情況討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)
如圖,拋物線的焦點(diǎn)到準(zhǔn)線的距離與橢圓的長(zhǎng)半軸相等,設(shè)橢圓的右頂點(diǎn)為在第一象限的交點(diǎn)為為坐標(biāo)原點(diǎn),且的面積為

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作直線兩點(diǎn),射線分別交兩點(diǎn).
(I)求證:點(diǎn)在以為直徑的圓的內(nèi)部;
(II)記的面積分別為,問(wèn)是否存在直線,使得?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)是橢圓的左焦點(diǎn),直線方程為,直線軸交于點(diǎn),分別為橢圓的左右頂點(diǎn),已知,且
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)且斜率為的直線交橢圓于、兩點(diǎn),求三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓,是其左頂點(diǎn)和左焦點(diǎn),是圓上的動(dòng)點(diǎn),若,則此橢圓的離心率是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的左焦點(diǎn)為, 點(diǎn)在橢圓上, 如果線段的中點(diǎn)軸的
正半軸上, 那么點(diǎn)的坐標(biāo)是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的焦點(diǎn)F1(-,0)和F2,0),長(zhǎng)軸長(zhǎng)6。
(1)求橢圓C的標(biāo)準(zhǔn)方程。
(2)設(shè)直線交橢圓C于A、B兩點(diǎn),求線段AB的中點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓,左右焦點(diǎn)分別為,
(1)若上一點(diǎn)滿足,求的面積;
(2)直線于點(diǎn),線段的中點(diǎn)為,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題14分)已知直線經(jīng)過(guò)橢圓的左頂點(diǎn)A和上頂點(diǎn)D,橢圓的右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線與直線分別交于兩點(diǎn)。

(I)求橢圓的方程;
(Ⅱ)求線段的長(zhǎng)度的最小值;
(Ⅲ)當(dāng)線段的長(zhǎng)度最小時(shí),在橢圓上是否存在這樣的點(diǎn),使得的面積為?若存在,確定點(diǎn)的個(gè)數(shù),若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一圓形紙片的圓心為點(diǎn),點(diǎn)是圓內(nèi)異于點(diǎn)的一定點(diǎn),點(diǎn)是圓周上一點(diǎn).把紙片折疊使點(diǎn)重合,然后展平紙片,折痕與交于點(diǎn).當(dāng)點(diǎn)運(yùn)動(dòng)時(shí)點(diǎn)的軌跡是(  )
A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

同步練習(xí)冊(cè)答案