【題目】如圖,在平面直角坐標系中,設點是橢圓 上一點,從原點向圓 作兩條切線分別與橢圓交于點, ,直線, 的斜率分別記為 . 

(1)求證: 為定值;

(2)求四邊形面積的最大值.

【答案】(1)證明見解析;(2)1.

【解析】試題分析:(1)因為直線 , ,與圓相切,推出, 是方程的兩個不相等的實數(shù)根,利用韋達定理得,結(jié)合點點在橢圓上,得出;(2)當直線 不落在坐標軸上時,設, ,通過,推出,結(jié)合, 在橢圓上,可得,再討論直線落在坐標軸上時,顯然有,然后表示出,結(jié)合基本不等式即可求出四邊形面積的最大值.

試題解析:1因為直線 , ,與圓相切,

,可得, 是方程的兩個不相等的實數(shù)根

,因為點在橢圓上,所以,

.

2)(i)當直線, 不落在坐標軸上時,設,

因為,所以,即,

因為 在橢圓上,

所以

整理得,所以,

所以.

ii)當直線落在坐標軸上時,顯然有,

綜上: . 

因為,

因為,

所以的最大值為1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,拋物線在第一象限內(nèi)的點到焦點的距離為,曲線在點處的切線交軸于點,直線經(jīng)過點且垂直于軸.

(Ⅰ)求線段的長;

(Ⅱ)設不經(jīng)過點的動直線交曲線于點,交于點,若直線的斜率依次成等差數(shù)列,試問:是否過定點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

I)求曲線在點處的切線方程.

II)求證:當時,

III)設實數(shù)使得恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,其中實數(shù)滿足,若的最大值為,則 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

)當為自然對數(shù)的底數(shù))時,求的極小值;

Ⅱ)若函數(shù)存在唯一零點,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, , , 的中點.

)求證: 平面

)求二面角的余弦值.

)在線段上是否存在點,使得,若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術的特點,在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,制作工藝十分復雜,它的制作過程必須先后經(jīng)過兩次燒制,當?shù)谝淮螣坪细窈蠓娇蛇M入第二次燒制,兩次燒制過程相互獨立。某陶瓷廠準備仿制甲、乙、丙三件不同的唐三彩工藝品,根據(jù)該廠全面治污后的技術水平,經(jīng)過第一次燒制后,甲、乙、丙三件工藝品合格的概率依次為 , ,經(jīng)過第二次燒制后,甲、乙、丙三件工藝品合格的概率依次為, , .

(1)求第一次燒制后甲、乙、丙三件中恰有一件工藝品合格的概率;

(2)經(jīng)過前后兩次燒制后,甲、乙、丙三件工藝品成為合格工藝品的件數(shù)為,求隨機變量的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分14分如圖,已知橢圓,其左右焦點為,過點的直線交橢圓兩點,線段的中點為,的中垂線與軸和軸分別交于兩點,且、構(gòu)成等差數(shù)列.

1求橢圓的方程;

2的面積為,為原點的面積為.試問:是否存在直線,使得?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一盒中裝有除顏色外其余均相同的12個小球,從中隨機取出1個球,取出紅球的概率為,取出黑球的概率為,取出白球的概率為,取出綠球的概率為.求:

(1)取出的1個球是紅球或黑球的概率;

(2)取出的1個球是紅球或黑球或白球的概率.

查看答案和解析>>

同步練習冊答案