以下說(shuō)法正確的是(  )
A、若直線a不平行于平面α,則直線a與平面α相交
B、直線a和b是異面直線,若直線c∥a,則c與b一定相交
C、若直線a和b都和平面α平行,則a和b也平行
D、若直線c平行直線a,直線b⊥a,則b⊥c
考點(diǎn):命題的真假判斷與應(yīng)用
專題:空間位置關(guān)系與距離
分析:根據(jù)空間直線與平面的位置關(guān)系的定義,逐一分析四個(gè)答案的正誤,可得結(jié)論.
解答: 解:若直線a不平行于平面α,則直線a與平面α相交,或a?α,故A錯(cuò)誤;
若直線a和b是異面直線,若直線c∥a,則c與b相交或異面,故B錯(cuò)誤;
若直線a和b都和平面α平行,則a和b可能平行,可能相交,也可能異面,故C錯(cuò)誤;
若直線c平行直線a,直線b⊥a,則b⊥c,故D正確;
故選:D
點(diǎn)評(píng):本題以命題的真假判斷為載體考查了空間直線與平面位置關(guān)系的定義,熟練掌握空間直線與平面位置關(guān)系的定義及幾何特征,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)正三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC.已知A1B1=1,AA1=4,BB1=2,CC1=3.
(1)設(shè)點(diǎn)O是AB的中點(diǎn),證明:OC∥平面A1B1C1;
(2)求AB與平面AA1C1C所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知t為自變量,求下列函數(shù)的二階導(dǎo)數(shù).
(1)u=A•e-
B
t

(2)u=
A+B
lg(1+t)
;
(3)u=
t
A+Bt

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x∈R,符號(hào)[x]表示不超過(guò)x的最大整數(shù),若函數(shù)f(x)=
[x]
x
(x>0),則給出以下四個(gè)結(jié)論:
①函數(shù)f(x)的值域?yàn)閇0,1];
②函數(shù)f(x)的圖象是一條曲線;
③函數(shù)f(x)是(0,+∞)上的減函數(shù);
④函數(shù)g(x)=f(x)-a有且僅有3個(gè)零點(diǎn)時(shí)
3
4
<a≤
4
5

其中正確的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=
n2+n
2
,n∈N*
,
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)bn=2an+an,求數(shù)列{ bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(4-x)ex的單調(diào)遞減區(qū)間是( 。
A、(-∞,4)
B、(-∞,3)
C、(4,+∞)
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
1
3
ax3+
1
2
ax2-a+1的圖象經(jīng)過(guò)四個(gè)象限,則實(shí)數(shù)a的取值范圍是(  )
A、
5
6
<a<1
B、a<1或a>
6
5
C、a>-
5
6
或a<-1
D、1<a<
6
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以直線x-y=0與x-3y+2=0的交點(diǎn)A,及B(0,4),C(3,0)組成三角形ABC,D為BC邊上的中點(diǎn),求:
(1)AD所在直線方程
(2)三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知坐標(biāo)平面yOz上一點(diǎn)P滿足:①三坐標(biāo)之和為2;②到點(diǎn) A(3,2,5)、B(3,5,2)的距離相等.求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案