已知點(diǎn)P(x,y)滿(mǎn)足條件
x+y-3≤0
x-y-1≤0
x-1≥0
,點(diǎn)A(2,1),則|
OP
|•cos∠AOP的最大值為( 。
A、
4
5
5
B、
7
5
5
C、
9
5
5
D、
5
分析:先根據(jù)約束條件畫(huà)出可行域,利用向量的數(shù)量積將|
OP
|•cos∠AOP轉(zhuǎn)化成
2x+y
5
,設(shè)z=2x+y,再利用z的幾何意義求最值,只需求出直線(xiàn)z=2x+y過(guò)可行域內(nèi)的點(diǎn)M時(shí),從而得到|
OP
|•cos∠AOP的最大值即可.
解答:解:在平面直角坐標(biāo)系中畫(huà)出不等式組所表示的可行域(如圖),
由于|
OP
|•cos∠AOP=
|
OP
|•|
OA
|cos∠AOP
|
OA
|

=
OP
OA
|
OA
|
,而
OA
=(2,1),
OP
=(x,y),
所以|
OP
|•cos∠AOP=
2x+y
5
,
令z=2x+y,則y=-2x+z,即z表示直線(xiàn)y=-2x+z在y軸上的截距,
由圖形可知,當(dāng)直線(xiàn)經(jīng)過(guò)可行域中的點(diǎn)B(2,1)時(shí),z取到最大值,
這時(shí)z=5,
所以|
OP
|•cos∠AOP=
5
5
=
5
,
故|
OP
|•cos∠AOP的最大值等于
5
5
=
5
精英家教網(wǎng)
故選D.
點(diǎn)評(píng):本題主要考查了向量的數(shù)量積、簡(jiǎn)單的線(xiàn)性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.巧妙識(shí)別目標(biāo)函數(shù)的幾何意義是我們研究規(guī)劃問(wèn)題的基礎(chǔ),縱觀目標(biāo)函數(shù)包括線(xiàn)性的與非線(xiàn)性,非線(xiàn)性問(wèn)題的介入是線(xiàn)性規(guī)劃問(wèn)題的拓展與延伸,使得規(guī)劃問(wèn)題得以深化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x、y)滿(mǎn)足不等式組
x+y≥4
x≤4
y≤3
,則
x2+y2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x,y)滿(mǎn)足
x-4y≤-3
3x+5y≤25
x≥1
,則點(diǎn)P到直線(xiàn)2x+y+2=0的距離的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x,y)滿(mǎn)足條件
x-y-2≤0
x+2y-5≥0
y-2≤0
,點(diǎn)A(2,1),則|
OP
|•cos∠AOP的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x,y)滿(mǎn)足條件
y≥0
y≤x
2x+y-9≤0
,則z=x-3y的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x,y)滿(mǎn)足橢圓方程2x2+y2=1,則
yx-1
的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案