離心率是橢圓的離心率的倒數(shù),焦點是橢圓長軸的頂點的雙曲線方程是

[    ]

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

點P(x,y)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的任意一點,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點,且∠F1PF2≤90°,則該橢圓的離心率的取值范圍是( 。
A、0<e≤
2
2
B、
2
2
≤e<1
C、0<e<1
D、e=
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)O為坐標原點,F(xiàn)1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,若在橢圓上存在點P滿足F1PF2=
π
3
,且|OP|=
3
2
a
,則該橢圓的離心率為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P(x,y)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的任意一點,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點,且∠F1PF2≤90°,則該橢圓的離心率e的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•昆明模擬)已知F1、F2是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點,P為橢圓C短軸的一個端點,且PF1⊥PF2,則該橢圓的離心率為(  )

查看答案和解析>>

同步練習冊答案