精英家教網 > 高中數學 > 題目詳情
已知兩點,且的等差中項,則動點的軌跡方程是(    )
A.B.C.D.
C

試題分析:設,由題可知,根據兩點間距離公式得,化簡可得
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,橢圓短軸的一個端點與兩個焦點構成的三角形的面積為
(1)求橢圓C的方程;
(2)已知動直線y=k(x+1)與橢圓C相交于A,B兩點.
①若線段AB中點的橫坐標為-,求斜率k的值;
②已知點M(-,0),求證:·為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分,(1)小問4分,(2)小問8分)已知為橢圓上兩動點,分別為其左右焦點,直線過點,且不垂直于軸,的周長為,且橢圓的短軸長為
(1)求橢圓的標準方程;
(2)已知點為橢圓的左端點,連接并延長交直線于點.求證:直線過定點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)(2011•重慶)如圖,橢圓的中心為原點0,離心率e=,一條準線的方程是x=2

(Ⅰ)求橢圓的標準方程;
(Ⅱ)設動點P滿足:=+2,其中M、N是橢圓上的點,直線OM與ON的斜率之積為﹣,
問:是否存在定點F,使得|PF|與點P到直線l:x=2的距離之比為定值;若存在,求F的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(2011•山東)在平面直角坐標系xOy中,已知橢圓.如圖所示,斜率為k(k>0)且不過原點的直線l交橢圓C于A,B兩點,線段AB的中點為E,射線OE交橢圓C于點G,交直線x=﹣3于點D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD|?|OE|,
(i)求證:直線l過定點;
(ii)試問點B,G能否關于x軸對稱?若能,求出此時△ABG的外接圓方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知是橢圓和雙曲線的公共焦點,是他們的一個公共點,且,則橢圓和雙曲線的離心率的倒數之和的最大值為(   )
A.B.C.3D.2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知F1、F2為橢圓的兩個焦點,過F1的直線交橢圓于A、B兩點,若,則= _____________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的一個焦點為,且離心率為
(1)求橢圓方程;
(2)斜率為的直線過點,且與橢圓交于兩點,為直線上的一點,若△為等邊三角形,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知是橢圓上的點,則的取值范圍是               

查看答案和解析>>

同步練習冊答案