【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為, ,且經(jīng)過(guò)點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)的頂點(diǎn)都在橢圓上,其中關(guān)于原點(diǎn)對(duì)稱,試問(wèn)能否為正三角形?并說(shuō)明理由.

【答案】(Ⅰ) ;(Ⅱ) 不可能為正三角形,理由見解析.

【解析】試題分析:

()設(shè)橢圓的標(biāo)準(zhǔn)方程為,依題意得利用橢圓的定義可得,則橢圓的標(biāo)準(zhǔn)方程為.

()為正三角形,則,

顯然直線的斜率存在且不為0,設(shè)方程為聯(lián)立直線方程與橢圓方程可得, ,,同理可得.據(jù)此可得關(guān)于實(shí)數(shù)k的方程,方程無(wú)解,則不可能為正三角形.

試題解析:

()設(shè)橢圓的標(biāo)準(zhǔn)方程為,

依題意得

,

所以, ,

故橢圓的標(biāo)準(zhǔn)方程為.

()為正三角形,則

顯然直線的斜率存在且不為0,

設(shè)方程為

的方程為,聯(lián)立方程

解得,

所以,

同理可得.

,所以

化簡(jiǎn)得無(wú)實(shí)數(shù)解,

所以不可能為正三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】各棱長(zhǎng)都等于4的四面ABCD中,設(shè)G為BC的中點(diǎn),E為△ACD內(nèi)的動(dòng)點(diǎn)(含邊界),且GE∥平面ABD,若 =1,則| |=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司的管理者通過(guò)公司近年來(lái)科研費(fèi)用支出x(百萬(wàn)元)與公司所獲得利潤(rùn)y(百萬(wàn)元)的散點(diǎn)圖發(fā)現(xiàn),y與x之間具有線性相關(guān)關(guān)系,具體數(shù)據(jù)如下表:

年份

2010

2011

2012

2013

2014

科研費(fèi)用x(百萬(wàn)元)

1.6

1.7

1.8

1.9

2.0

公司所獲利潤(rùn)y(百萬(wàn)元)

1

1.5

2

2.5

3

(1)求y關(guān)于x的回歸直線方程;

(2)若該公司的科研投入從2011年開始連續(xù)10年每一年都比上一年增加10萬(wàn)元,預(yù)測(cè)2017年該公司可獲得的利潤(rùn)約為多少萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題;命題:函數(shù)在區(qū)間上為減函數(shù).

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若命題“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且 ,在數(shù)列中,,點(diǎn)在直線上.

(1)求數(shù)列的通項(xiàng)公式;

(2)記,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓C: =1的離心率e= ,動(dòng)點(diǎn)P在橢圓C上,點(diǎn)P到橢圓C的兩個(gè)焦點(diǎn)的距離之和是4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C1的方程為 =1(m>n>0),橢圓C2的方程為 =λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知橢圓C2是橢圓C的3倍相似橢圓.若過(guò)橢圓C上動(dòng)點(diǎn)P的切線l交橢圓C2于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),試證明當(dāng)切線l變化時(shí)|PA|=|PB|并研究△OAB面積的變化情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,,其中0<α<x<π.

(1)若α=,求函數(shù)的最小值及相應(yīng)x的值;

(2)若的夾角為,且,求tan 2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程是ρ= ,以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(﹣1,0),直線l與曲線C交于A、B兩點(diǎn).
(Ⅰ)寫出直線l的極坐標(biāo)方程與曲線C的普通方程;
(Ⅱ)求線段MA、MB長(zhǎng)度之積MAMB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣2|+|x+a|(a∈R).
(1)若a=1時(shí),求不等式f(x)≥4的解集;
(2)若不等式f(x)≤2x的解集為[1,+∞),求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案