年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆四川省高二入學(xué)考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),且,函數(shù)的圖象經(jīng)過點(diǎn),且與的圖象關(guān)于直線對稱,將函數(shù)的圖象向左平移2個(gè)單位后得到函數(shù)的圖象.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若在區(qū)間上的值不小于8,求實(shí)數(shù)的取值范圍.
(III)若函數(shù)滿足:對任意的(其中),有,稱函數(shù)在的圖象是“下凸的”.判斷此題中的函數(shù)圖象在是否是“下凸的”?如果是,給出證明;如果不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山西省晉商四校高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知⊙中,直徑垂直于弦,垂足為,是延長線上一點(diǎn),切⊙于點(diǎn),連接交于點(diǎn),證明:
【解析】本試題主要考查了直線與圓的位置關(guān)系的運(yùn)用。要證明角相等,一般運(yùn)用相似三角形來得到,或者借助于弦切角定理等等。根據(jù)為⊙的切線,∴為弦切角
連接 ∴…注意到是直徑且垂直弦,所以 且…利用,可以證明。
解:∵為⊙的切線,∴為弦切角
連接 ∴……………………4分
又∵ 是直徑且垂直弦 ∴ 且……………………8分
∴ ∴
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市青浦區(qū)高三上學(xué)期期終學(xué)習(xí)質(zhì)量調(diào)研測試數(shù)學(xué)試卷 題型:解答題
(本題滿分14分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
在中,角、、的對邊分別、、,已知,,且.
(1)求角的大。
(2)求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長寧區(qū)高三教學(xué)質(zhì)量測試?yán)砜茢?shù)學(xué) 題型:選擇題
(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
已知為銳角,且.
(1)設(shè),若,求的值;
(2)在中,若,,,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com