已知線性相關(guān)的兩個變量x,y之間的幾組數(shù)據(jù)如下表:
x123456
y021334
其線性回歸方程為
y
=bx+a,則a,b滿足的關(guān)系式為
 
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:計(jì)算出x,y的平均數(shù),即為樣本中心點(diǎn)的坐標(biāo),代入即可得出結(jié)論.
解答: 解:由題意,
.
x
=
1
6
(1+2+3+4+5+6)=
7
2
,
.
y
=
1
6
(0+2+1+3+3+4)=
13
6
,
代入
y
=bx+a,可得
13
6
=
7
2
b+a,即6a+21b=13.
故答案為:6a+21b=13.
點(diǎn)評:本題考查線性回歸方程,本題解題的關(guān)鍵是理解線性回歸方程過這組數(shù)據(jù)的樣本中心點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若ab>0,則下列四個等式:
①lg(ab)=lga+lgb
②lg(
a
b
)=lga-lgb
1
2
lg(
a
b
2=lg(
a
b

④lg(ab)=
1
logab10
中正確等式的符號是( 。
A、①②③④B、①②C、③④D、③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)+2f(3-x)=x2,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在定義域內(nèi)存在實(shí)數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)有“飄移點(diǎn)”x0
(1)函數(shù)f(x)=
1
x
是否有“飄移點(diǎn)”?請說明理由;
(2)證明函數(shù)f(x)=x2+2x在(0,1)上有“飄移點(diǎn)”;
(3)若函數(shù)f(x)=lg(
a
x2+1
)在(0,+∞)上有“飄移點(diǎn)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)為F1,F(xiàn)2,離心率為
3
3
,過F2的直線l交C于A,B兩點(diǎn).若△AF1B的周長為4
3
,則C的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,則f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某考察團(tuán)對全國10大城市職工的人均平均工資x與居民人均消費(fèi)y進(jìn)行統(tǒng)計(jì)調(diào)查,y與x具有相關(guān)關(guān)系,回歸方程
y
=0.6x+1.5 (單位:千元),若某城市居民的人均消費(fèi)額為7.5千元,估計(jì)該城市人均消費(fèi)額占人均工資收入的百分比為( 。
A、66%B、72.3%
C、75%D、83%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x+sinx,若f(a)=3,則f(-a)的值( 。
A、aB、-aC、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中是偶函數(shù),且在(0,2)內(nèi)單調(diào)遞增的是(  )
A、y=x2-2x
B、y=cosx+1
C、y=lg|x|+2
D、y=2x

查看答案和解析>>

同步練習(xí)冊答案