設(shè)函數(shù)f(x)=
x
x+1
(x>0)
,觀察:f1(x)=f(x)=
x
x+1
,f2(x)=f(f1(x))=
x
2x+1
,f3(x)=f(f2(x))=
x
3x+1
f4(x)=f(f3(x))=
x
4x+1
,根據(jù)以上事實,由歸納推理可得:當(dāng)n∈N+且n≥2時,fn(x)=f(fn-1(x))=
x
nx+1
x
nx+1
分析:題目給出的前四個等式的特點是,左邊依次為f1(x),f2(x),f3(x)…,右邊都是單項式,且分子都是x,分母是左邊的“f”的右下角碼乘以x加1,由此規(guī)律可得出正確結(jié)論.
解答:解:由題目給出的四個等式發(fā)現(xiàn),每一個等式的右邊都是一個單項式,分子都是x,分母是等式左邊的“f”的右下角碼乘以x加1,據(jù)此可以歸納為:fn(x)=f(fn-1(x))=
x
nx+1

故答案為
x
nx+1
點評:本題考查了歸納推理,歸納推理是根據(jù)已有的事實,經(jīng)過觀察、分析、比較、聯(lián)想,再進行歸納類比,然后提出猜想的推理,此題是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知函數(shù)f(x)=
x
x+1
.?dāng)?shù)列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數(shù)列{bn}的前n項和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數(shù)列{bn}的通項公式;并判斷b4+b6是否仍為數(shù)列{bn}中的項?若是,請證明;否則,說明理由.
(Ⅱ)設(shè){cn}為首項是c1,公差d≠0的等差數(shù)列,求證:“數(shù)列{cn}中任意不同兩項之和仍為數(shù)列{cn}中的項”的充要條件是“存在整數(shù)m≥-1,使c1=md”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2-xx∈(-∞,1)
x2x∈[1,+∞)
若f(x)>4,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
x+2
(x>0)
,觀察:f1(x)=f(x)=
x
x+2
,f2(x)=f(f1(x))=
x
3x+4
,f3(x)=f(f2(x))=
x
7x+8
,f4(x)=f(f3(x))=
x
15x+16
…根據(jù)以上事實,由歸納推理可得當(dāng)n∈N*且n≥2時,fn(x)=f(fn-1(x))=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
x+2
(x>0)
,觀察:f1(x)=f(x)=
x
x+2
,f2(x)=f[f1(x)]=
x
3x+4
,f3(x)=f[f2(x)]=
x
7x+8
f4(x)=f[f3(x)]=
x
15x+16

------根據(jù)以上事實,由歸納推理可得:當(dāng)n∈N+且n>1時,fn(x)=
x
(2n-1)x+2n
x
(2n-1)x+2n

查看答案和解析>>

同步練習(xí)冊答案