如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=|PD|,當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程。

解析試題分析:這是一道典型的關(guān)于軌跡問(wèn)題的題目,通常的解法:①設(shè)出所求軌跡點(diǎn)的坐標(biāo);②找出已知點(diǎn)的坐標(biāo)與其之間的等量關(guān)系;③代入已知點(diǎn)的軌跡方程;④求出所求點(diǎn)的軌跡方程.在此題的解答過(guò)程中,可以先設(shè)出所求點(diǎn)的坐標(biāo),已知點(diǎn)的坐標(biāo),由“點(diǎn)軸上的投影”且“”得到點(diǎn)與點(diǎn)坐標(biāo)之間的等量關(guān)系,又由于點(diǎn)是已知圓上的點(diǎn),將其坐標(biāo)代入圓方程,經(jīng)整理即可得到所點(diǎn)的軌跡方程.
試題解析:設(shè)的坐標(biāo)為,的坐標(biāo)為,則由已知得    5分
因?yàn)辄c(diǎn)在圓上,所以,即所求點(diǎn)的軌跡的方程為.  10分
考點(diǎn):軌跡問(wèn)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線和⊙,過(guò)拋物線上一點(diǎn)作兩條直線與⊙相切于、兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)到拋物線準(zhǔn)線的距離為

(1)求拋物線的方程;
(2)當(dāng)的角平分線垂直軸時(shí),求直線的斜率;
(3)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某校同學(xué)設(shè)計(jì)一個(gè)如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中是過(guò)拋物線焦點(diǎn)的兩條弦,且其焦點(diǎn),,點(diǎn)軸上一點(diǎn),記,其中為銳角.

(1)求拋物線方程;
(2)如果使“蝴蝶形圖案”的面積最小,求的大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓的方程為,雙曲線的兩條漸近線為、.過(guò)橢圓的右焦點(diǎn)作直線,使,又交于點(diǎn),設(shè)與橢圓的兩個(gè)交點(diǎn)由上至下依次為、.

(1)若的夾角為,且雙曲線的焦距為,求橢圓的方程;
(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為.
(1)求橢圓的方程;
(2)過(guò)右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,則內(nèi)切圓的圓面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),短軸長(zhǎng)為4,且有一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過(guò)定點(diǎn)M(2,0)且斜率不為0的直線交橢圓C于A、B兩點(diǎn),試問(wèn)在x軸上是否另存在一個(gè)定點(diǎn)P使得始終平分?若存在求出點(diǎn)坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn),是常數(shù)),且動(dòng)點(diǎn)軸的距離比到點(diǎn)的距離小.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)(i)已知點(diǎn),若曲線上存在不同兩點(diǎn)滿足,求實(shí)數(shù)的取值范圍;
(ii)當(dāng)時(shí),拋物線上是否存在異于的點(diǎn),使得經(jīng)過(guò)、三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,已知中心在原點(diǎn),離心率為的橢圓E的一個(gè)焦點(diǎn)為圓的圓心.
⑴求橢圓E的方程;
⑵設(shè)P是橢圓E上一點(diǎn),過(guò)P作兩條斜率之積為的直線,當(dāng)直線都與圓相切時(shí),求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線.過(guò)點(diǎn)的直線兩點(diǎn).拋物線在點(diǎn)處的切線與在點(diǎn)處的切線交于點(diǎn)

(Ⅰ)若直線的斜率為1,求;
(Ⅱ)求面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案