【題目】某調(diào)查機(jī)構(gòu)為了了解某產(chǎn)品年產(chǎn)量x(噸)對(duì)價(jià)格y(千克/噸)和利潤(rùn)z的影響,對(duì)近五年該產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:
x | 1 | 2 | 3 | 4 | 5 |
y | 17.0 | 16.5 | 15.5 | 13.8 | 12.2 |
(1)求y關(guān)于x的線(xiàn)性回歸方程;
(2)若每噸該產(chǎn)品的成本為12千元,假設(shè)該產(chǎn)品可全部賣(mài)出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少時(shí),年利潤(rùn)w取到最大值?
參考公式:
【答案】(1)(2)當(dāng)時(shí),年利潤(rùn)最大.
【解析】
(1)方法一:令,先求得關(guān)于的回歸直線(xiàn)方程,由此求得關(guān)于的回歸直線(xiàn)方程.方法二:根據(jù)回歸直線(xiàn)方程計(jì)算公式,計(jì)算出回歸直線(xiàn)方程.方法一的好處在計(jì)算的數(shù)值較小.
(2)求得w的表達(dá)式,根據(jù)二次函數(shù)的性質(zhì)作出預(yù)測(cè).
(1)方法一:取,則得與的數(shù)據(jù)關(guān)系如下
1 | 2 | 3 | 4 | 5 | |
7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
,
,
,
.
,
,
關(guān)于的線(xiàn)性回歸方程是即,
故關(guān)于的線(xiàn)性回歸方程是.
方法二:因?yàn)?/span>,
,
,
,
,
所以,
故關(guān)于的線(xiàn)性回歸方程是,
(2)年利潤(rùn),根據(jù)二次函數(shù)的性質(zhì)可知:當(dāng)時(shí),年利潤(rùn)最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)是曲線(xiàn):(為參數(shù))上的動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,以極點(diǎn)為中心,將線(xiàn)段順時(shí)針旋轉(zhuǎn)得到,設(shè)點(diǎn)的軌跡為曲線(xiàn).
(1)求曲線(xiàn),的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,點(diǎn)的坐標(biāo)為,射線(xiàn)與曲線(xiàn)分別交于兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元2020年春,我國(guó)湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會(huì)出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國(guó)科研人員,在研究新型冠狀病毒某種疫苗的過(guò)程中,利用小白鼠進(jìn)行科學(xué)試驗(yàn).為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對(duì)小白鼠進(jìn)行做接種試驗(yàn).該試驗(yàn)的設(shè)計(jì)為:①對(duì)參加試驗(yàn)的每只小白鼠每天接種一次;②連續(xù)接種三天為一個(gè)接種周期;③試驗(yàn)共進(jìn)行3個(gè)周期.已知每只小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率均為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無(wú)關(guān).
(1)若某只小白鼠出現(xiàn)癥狀即對(duì)其終止試驗(yàn),求一只小白鼠至多能參加一個(gè)接種周期試驗(yàn)的概率;
(2)若某只小白鼠在一個(gè)接種周期內(nèi)出現(xiàn)2次或3次癥狀,則在這個(gè)接種周期結(jié)束后,對(duì)其終止試驗(yàn).設(shè)一只小白鼠參加的接種周期為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的多面體中,底面為正方形,為等邊三角形,平面,,點(diǎn)是線(xiàn)段上除兩端點(diǎn)外的一點(diǎn).
(1)若點(diǎn)為線(xiàn)段的中點(diǎn),證明:平面;
(2)若二面角的余弦值為,試通過(guò)計(jì)算說(shuō)明點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】總體由編號(hào)為01,02,...,39,40的40個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表(如表)第1行的第4列和第5列數(shù)字開(kāi)始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為( )
A.23B.21C.35D.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開(kāi)一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).
表中,.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒水時(shí)間關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類(lèi)型?(不必說(shuō)明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問(wèn)求得的回歸方程知為多少時(shí),燒開(kāi)一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)值分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為ρ2(cos2θ+3sin2θ)=12,直線(xiàn)l的參數(shù)方程為(t為參數(shù)),直線(xiàn)l與曲線(xiàn)C交于M,N兩點(diǎn).
(1)若點(diǎn)P的極坐標(biāo)為(2,π),求|PM||PN|的值;
(2)求曲線(xiàn)C的內(nèi)接矩形周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)歷年大學(xué)生就業(yè)統(tǒng)計(jì)資料顯示:某大學(xué)理工學(xué)院學(xué)生的就業(yè)去向涉及公務(wù)員、教師、金融、公司和自主創(chuàng)業(yè)等五大行業(yè)2020屆該學(xué)院有數(shù)學(xué)與應(yīng)用數(shù)學(xué)、計(jì)算機(jī)科學(xué)與技術(shù)和金融工程等三個(gè)本科專(zhuān)業(yè),畢業(yè)生人數(shù)分別是70人,140人和210人現(xiàn)采用.分層抽樣的方法,從該學(xué)院畢業(yè)生中抽取18人調(diào)查學(xué)生的就業(yè)意向.
(1)應(yīng)從該學(xué)院三個(gè)專(zhuān)業(yè)的畢業(yè)生中分別抽取多少人?
(2)國(guó)家鼓勵(lì)大學(xué)生自主創(chuàng)業(yè),在抽取的18人中,就業(yè)意向恰有三個(gè)行業(yè)的學(xué)生有5人為方便統(tǒng)計(jì),將恰有三個(gè)行業(yè)就業(yè)意向的這5名學(xué)生分別記為、、、、,統(tǒng)計(jì)如下表:
公務(wù)員 | ○ | ○ | × | ○ | × |
教師 | ○ | × | ○ | × | ○ |
金融 | ○ | ○ | ○ | × | ○ |
公式 | × | × | ○ | ○ | ○ |
自主創(chuàng)業(yè) | × | ○ | ○ | × |
其中“○”表示有該行業(yè)就業(yè)意向,“×”表示無(wú)該行業(yè)就業(yè)意向.
現(xiàn)從、、、、這5人中隨機(jī)抽取2人接受采訪(fǎng).設(shè)為事件“抽取的2人中至少有一人有自主創(chuàng)業(yè)意向”,求事件發(fā)生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com