【題目】某市為了解本市萬名學(xué)生的漢字書寫水平,在全市范圍內(nèi)進(jìn)行了漢字聽寫考試,發(fā)現(xiàn)其成績服從正態(tài)分布
,現(xiàn)從某校隨機(jī)抽取了
名學(xué)生,將所得成績整理后,繪制出如圖所示的頻率分布直方圖.
(1)估算該校名學(xué)生成績的平均值
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)求這名學(xué)生成績在
內(nèi)的人數(shù);
(3)現(xiàn)從該校名考生成績在
的學(xué)生中隨機(jī)抽取兩人,該兩人成績排名(從高到低)在全市前
名的人數(shù)記為
,求
的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):若,則
,
【答案】(1);(2)
;(3)
.
【解析】試題分析:(1)直方圖中每個(gè)矩形的中點(diǎn)橫坐標(biāo)與該矩形的縱坐標(biāo)相乘后求和,即可得到該校名學(xué)生成績的平均值;(2)求出直方圖中最后兩個(gè)矩形的面積之和與總?cè)藬?shù)相乘即可求出這
名學(xué)生成績在
內(nèi)的人數(shù);(3)
的所有可能取值為
分別求出各隨機(jī)變量的概率,從而可得分布列,由期望公式可得結(jié)果.
試題解析:(1)
(2).
(3),則
.
.
所以該市前名的學(xué)生聽寫考試成績在
分以上.
上述名考生成績中
分以上的有
人.
隨機(jī)變量.于是
,
,
.
的分布列:
數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
且
是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)若,對任意
都有
恒成立,求實(shí)數(shù)
的取值范圍;
(3)設(shè)
且
,若
,是否存在實(shí)數(shù)
使函數(shù)
在
上的最大值為
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點(diǎn).
(1)設(shè)P是上的一點(diǎn),且AP⊥BE,求∠CBP的大。
(2)當(dāng)AB=3,AD=2時(shí),求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場對顧客實(shí)行購物優(yōu)惠活動(dòng)規(guī)定,一次購物付款總額:
(1)如果標(biāo)價(jià)總額不超過200元,則不給予優(yōu)惠;
(2)如果標(biāo)價(jià)總額超過200元但不超過500元,則按標(biāo)價(jià)總額給予9折優(yōu)惠;
(3)如果標(biāo)價(jià)總額超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予8折優(yōu)惠.
某人兩次去購物,分別付款180元和423元,假設(shè)他一次性購買上述兩次同樣的商品,則應(yīng)付款( )
A.550元B.560元C.570元D.580元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1).在中,
,
,
,
、
分別是
、
上的點(diǎn),且
,將
沿
折起到
的位置,使
,如圖(2).
(1)求證:平面
;
(2)當(dāng)點(diǎn)在何處時(shí),三棱錐
體積最大,并求出最大值;
(3)當(dāng)三棱錐體積最大時(shí),求
與平面
所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的奇函數(shù)
的導(dǎo)函數(shù)為
,當(dāng)
時(shí),
,若
,
,
,則
,
,
的大小關(guān)系正確的是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為提升學(xué)生的數(shù)學(xué)學(xué)習(xí)能力,進(jìn)行了主題分別為“運(yùn)算”、“推理”、“想象”、“建!彼膱龈傎.規(guī)定:每場競賽前三名得分分別為、
、
(
,且
、
、
),選手的最終得分為各場得分之和.最終甲、乙、丙三人包攬了每場競賽的前三名,在四場競賽中,已知甲最終得分為
分,乙最終得分為
分,丙最終得分為
分,且乙在“運(yùn)算”這場競賽中獲得了第一名,那么“運(yùn)算”這場競賽的第三名是( )
A.甲B.乙C.丙D.甲和丙都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的離心率為
,橢圓的一個(gè)頂點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形面積為2.
(1)求橢圓的方程;
(2)已知直線與橢圓
交于
兩點(diǎn),且與
軸,
軸交于
兩點(diǎn).
(i)若,求
的值;
(ii)若點(diǎn)的坐標(biāo)為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,
,
,
,
,
,點(diǎn)
在
上,且
,將
沿
折起,使得平面
平面
(如圖),
為
中點(diǎn).
(1)求證: 平面
;
(2)在線段上是否存在點(diǎn)
,使得
平面
?若存在,求
的值,并加以證明;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com